1 Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species.

Understanding the genomic relationship between wild and cultivated genomes would facilitate access to the untapped variability found in crop wild relatives. We developed genome assemblies of a cultivated lentil ( Lens culinaris ) as well as a wild relative ( L. ervoides ). Comparative analyses revealed large-scale structural rearrangements and additional repetitive DNA in the cultivated genome, resulting in regions of reduced recombination, segregation distortion and permanent heterozygosity in the offspring of a cross between the two species. These novel findings provide plant breeders with better insight into how best to approach accessing the novel variability available in wild relatives.

[1]  J. Weller,et al.  Genetic Basis for Lentil Adaptation to Summer Cropping in Northern Temperate Environments , 2021, bioRxiv.

[2]  K. Bett,et al.  QTL mapping of lentil anthracnose (Colletotrichum lentis) resistance from Lens ervoides accession IG 72815 in an interspecific RIL population , 2021 .

[3]  H. Puchta,et al.  Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering , 2020, Nature Communications.

[4]  P. Wincker,et al.  A reference genome for pea provides insight into legume genome evolution , 2019, Nature Genetics.

[5]  Xingtan Zhang,et al.  Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data , 2019, Nature Plants.

[6]  J. Macas,et al.  Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification , 2019, Mobile DNA.

[7]  Li-an Chen ASSESSING IMPACTS OF CROP-WILD INTROGRESSION IN LENTIL USING INTERSPECIFIC LENS SPECIES RECOMBINANT INBRED LINE POPULATIONS , 2018 .

[8]  B. Gaut,et al.  Demography and its effects on genomic variation in crop domestication , 2018, Nature Plants.

[9]  R. Ramírez-González,et al.  Impact of transposable elements on genome structure and evolution in bread wheat , 2018, Genome Biology.

[10]  Shujun Ou,et al.  LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.

[11]  J. Batley,et al.  Copy number variation and disease resistance in plants , 2017, Theoretical and Applied Genetics.

[12]  K. Bett,et al.  QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides , 2017, Scientific Reports.

[13]  John K. McCooke,et al.  A chromosome conformation capture ordered sequence of the barley genome , 2017, Nature.

[14]  J. Miller,et al.  Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes , 2017, BMC Genomics.

[15]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[16]  Taeyoung Lee,et al.  Genome-wide DNA methylation profile in mungbean , 2017, Scientific Reports.

[17]  S. Koren,et al.  Scaffolding of long read assemblies using long range contact information , 2016, BMC Genomics.

[18]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[19]  N. Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads , 2016, bioRxiv.

[20]  S. Cloutier,et al.  RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants , 2016, BMC Genomics.

[21]  J. Dunwell,et al.  CGIAR research program on grain legumes , 2016 .

[22]  Jan Vrána,et al.  BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes , 2016, Plant biotechnology journal.

[23]  S. Jackson,et al.  Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes , 2016, Genome Biology.

[24]  Nic Herndon,et al.  Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool , 2015, BMC Genomics.

[25]  Rod A Wing,et al.  A reference genome for common bean and genome-wide analysis of dual domestications , 2014, Nature Genetics.

[26]  Rajeev K. Varshney,et al.  Structural variations in plant genomes , 2014, Briefings in functional genomics.

[27]  Shelby L. Bidwell,et al.  An improved genome release (version Mt4.0) for the model legume Medicago truncatula , 2014, BMC Genomics.

[28]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[29]  Saad M. Khan,et al.  Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population , 2013, Genome research.

[30]  K. Olsen,et al.  A bountiful harvest: genomic insights into crop domestication phenotypes. , 2013, Annual review of plant biology.

[31]  Wayne E Clarke,et al.  Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil , 2013, BMC Genomics.

[32]  James K. Hane,et al.  Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement , 2013, Nature Biotechnology.

[33]  Ye Yin,et al.  Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution , 2013, Nature Communications.

[34]  Jiming Jiang,et al.  Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W] , 2012, Plant Cell.

[35]  Jesse R. Zaneveld,et al.  RNASTAR: an RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. , 2012, RNA.

[36]  A. Tullu,et al.  Field evaluation of resistance to Colletotrichum truncatum in Lens culinaris, Lens ervoides, and Lens ervoides × Lens culinaris derivatives , 2012 .

[37]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[38]  Huanming Yang,et al.  Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers , 2011, Nature Biotechnology.

[39]  Bernd Weisshaar,et al.  Targeted Identification of Short Interspersed Nuclear Element Families Shows Their Widespread Existence and Extreme Heterogeneity in Plant Genomes[W] , 2011, Plant Cell.

[40]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[41]  Pavel Neumann,et al.  Plant centromeric retrotransposons: a structural and cytogenetic perspective , 2011, Mobile DNA.

[42]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[43]  Susan R. Wessler,et al.  MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.

[44]  A. Tullu,et al.  Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medic.). , 2009 .

[45]  T. Mailund,et al.  SNPFile – A software library and file format for large scale association mapping and population genetics studies , 2008, BMC Bioinformatics.

[46]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[47]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[48]  Karam B. Singh,et al.  The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. , 2007, The New phytologist.

[49]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[50]  R. Shoemaker,et al.  Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. , 2005, Systematic biology.

[51]  J. Bennetzen,et al.  Rapid recent growth and divergence of rice nuclear genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[53]  E. D. Earle,et al.  Nuclear DNA content of some important plant species , 1991, Plant Molecular Biology Reporter.

[54]  J. Doležel,et al.  Flow Analysis and Sorting of Plant Chromosomes. , 2016, Current protocols in cytometry.

[55]  K. Bett,et al.  Widening the genetic base of cultivated lentil through hybridization of Lens culinaris ‘Eston’ and L. ervoides accession IG 72815 , 2013, Canadian Journal of Plant Science.

[56]  TahirMohammad,et al.  Composition and correlation between major seed constituents in selected lentil (Lens culinaris. Medik) genotypes , 2011 .

[57]  A. Paterson,et al.  Preparation of megabase‐size DNA from plant nuclei , 1995 .