Spell Checking Nature: Versatility of CRISPR/Cas9 for Developing Treatments for Inherited Disorders.

[1]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[2]  Wei Yan,et al.  Production of Gene‐Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation , 2015, Stem cells.

[3]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[4]  Pooja Chaudhari,et al.  Efficient and allele-specific genome editing of disease loci in human iPSCs. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[6]  William H. Majoros,et al.  Multiplex CRISPR/Cas9-Based Genome Editing for Correction of Dystrophin Mutations that Cause Duchenne Muscular Dystrophy , 2015, Nature Communications.

[7]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[8]  Tetsushi Sakuma,et al.  Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9 , 2014, Stem cell reports.

[9]  Richard L. Frock,et al.  Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases , 2014, Nature Biotechnology.

[10]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[11]  Peng Qiu,et al.  COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites , 2014, Molecular therapy. Nucleic acids.

[12]  E. Olson,et al.  Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA , 2014, Science.

[13]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[14]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[15]  T. Mashimo,et al.  Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform , 2014, Nature Communications.

[16]  Matthew C. Canver,et al.  Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*♦ , 2014, The Journal of Biological Chemistry.

[17]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[18]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[19]  L. van der Weerd,et al.  Low dystrophin levels in heart can delay heart failure in mdx mice. , 2014, Journal of molecular and cellular cardiology.

[20]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[21]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[22]  D. Burkin,et al.  Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. , 2014, Human molecular genetics.

[23]  L. Popplewell,et al.  New developments in the use of gene therapy to treat Duchenne muscular dystrophy , 2014, Expert opinion on biological therapy.

[24]  Hans Clevers,et al.  Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. , 2013, Cell stem cell.

[25]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[26]  Yarden Katz,et al.  Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system , 2013, Cell Research.

[27]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[28]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[29]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[30]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[31]  G. van Ommen,et al.  Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double‐knockout mice , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[32]  K. Davies,et al.  Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches , 2013, Nature Reviews Genetics.

[33]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[34]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[35]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[36]  Farshid Guilak,et al.  Synergistic and tunable human gene activation by combinations of synthetic transcription factors , 2013, Nature Methods.

[37]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[38]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[39]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[40]  E. Hoffman,et al.  Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery , 2012, Proceedings of the National Academy of Sciences.

[41]  J. D. den Dunnen,et al.  The Effects of Low Levels of Dystrophin on Mouse Muscle Function and Pathology , 2012, PloS one.

[42]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[43]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[44]  D. Duan,et al.  Novel mini-dystrophin gene dual adeno-associated virus vectors restore neuronal nitric oxide synthase expression at the sarcolemma. , 2012, Human gene therapy.

[45]  F. Muntoni,et al.  Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders , 2011, Skeletal Muscle.

[46]  Stefano Monti,et al.  Genome-wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells , 2011, Cell.

[47]  J. Bourke,et al.  Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study , 2011, The Lancet.

[48]  K. Davies,et al.  Daily Treatment with SMTC1100, a Novel Small Molecule Utrophin Upregulator, Dramatically Reduces the Dystrophic Symptoms in the mdx Mouse , 2011, PloS one.

[49]  G. van Ommen,et al.  Systemic administration of PRO051 in Duchenne's muscular dystrophy. , 2011, The New England journal of medicine.

[50]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[51]  J. Chamberlain,et al.  Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[52]  Eunji Kim,et al.  Targeted chromosomal deletions in human cells using zinc finger nucleases. , 2010, Genome research.

[53]  Christophe Béroud,et al.  Genotype–phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD–DMD database: a model of nationwide knowledgebase , 2009, Human mutation.

[54]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[55]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[56]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[57]  C. Barbas,et al.  Exploring Strategies for the Design of Artificial Transcription Factors , 2005, Journal of Biological Chemistry.

[58]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[59]  G Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[60]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[61]  R. Griggs,et al.  Report on the 124th ENMC International Workshop. Treatment of Duchenne muscular dystrophy; defining the gold standards of management in the use of corticosteroids 2–4 April 2004, Naarden, The Netherlands , 2004, Neuromuscular Disorders.

[62]  Francesca Chiaromonte,et al.  Gene length and proximity to neighbors affect genome-wide expression levels. , 2003, Genome research.

[63]  A. Belmont,et al.  Sequential Recruitment of HAT and SWI/SNF Components to Condensed Chromatin by VP16 , 2003, Current Biology.

[64]  C. Barbas,et al.  Positive and negative regulation of endogenous genes by designed transcription factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K. Davies,et al.  A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Nicolas Deconinck,et al.  Expression of full-length utrophin prevents muscular dystrophy in mdx mice , 1998, Nature Medicine.

[67]  K. Davies,et al.  Molecular and functional analysis of the utrophin promoter. , 1996, Nucleic acids research.

[68]  K. Bushby,et al.  Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 1. Trends across the clinical groups. , 1993, Journal of medical genetics.

[69]  K. Bushby,et al.  Dystrophin expression in Duchenne patients with "in-frame" gene deletions. , 1993, Neuropediatrics.