On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation

AbstractThis paper is concerned with the Lévy, or stable distribution function defined by the Fourier transform $$Q_\alpha \left( z \right) = \frac{1}{{2\pi }}\int {_{ - \infty }^\infty \exp \left( { - izu - \left| u \right|^\alpha } \right)du} with 0< \alpha \leqslant 2$$ Whenα=2 it becomes the Gauss distribution function and whenα=1, the Cauchy distribution. Whenα≠2 the distribution has a long inverse power tail $$Q_\alpha \left( z \right) \sim \frac{{\Gamma \left( {1 + \alpha } \right)\sin \tfrac{1}{2}\pi \alpha }}{{\pi \left| z \right|^{1 + \alpha } }}$$ In the regime of smallα, ifα¦logz¦≪1, the distribution is mimicked by a log normal distribution. We have derived rapidly converging algorithms for the numerical calculation ofQα(z) for variousα in the range 0<α<1. The functionQα(z) appears naturally in the Williams-Watts model of dielectric relaxation. In that model one expresses the normalized dielectric parameter as $$ \in _n \left( \omega \right) \equiv \in '_n \left( \omega \right) - i \in ''_n \left( \omega \right) = - \int {_0^\infty e^{ - i\omega t} \left[ {{{d\phi \left( t \right)} \mathord{\left/ {\vphantom {{d\phi \left( t \right)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}}} \right]} dt$$ with $$\phi \left( t \right) = \exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha $$ It has been found empirically by various authors that observed dielectric parameters of a wide variety of materials of a broad range of frequencies are fitted remarkably accurately by using this form ofφ(t).ε″n(ω) is shown to be directly related toQα(z). It is also shown that if the Williams-Watts exponential is expressed as a weighted average of exponential relaxation functions $$\exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha = \int {_0^\infty } g\left( {\lambda , \alpha } \right)e^{ - \lambda t} dt$$ the weight functiong(λ, α) is expressible as a stable distribution. Some suggestions are made about physical models that might lead to the Williams-Watts form ofφ(t).

[1]  A. Wintner The singularities of Cauchy’s distributions , 1941 .

[2]  Harry Pollard,et al.  The representation of $e^{ - x^\lambda }$ as a Laplace integral , 1946 .

[3]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[4]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[5]  William Shockley,et al.  On the Statistics of Individual Variations of Productivity in Research Laboratories , 1957, Proceedings of the IRE.

[6]  S. Glarum,et al.  Dielectric Relaxation of Polar Liquids , 1960 .

[7]  Graham Williams,et al.  Correlation function approach to the dielectric behaviour of amorphous polymers , 1970 .

[8]  S. Dev,et al.  Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1971 .

[9]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[10]  R. Zwanzig,et al.  Dielectric relaxation and dynamic susceptibility of a one‐dimensional model for perpendicular‐dipole polymers , 1975 .

[11]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[12]  G. P. Johari,et al.  GLASS TRANSITION AND SECONDARY RELAXATIONS IN MOLECULAR LIQUIDS AND CRYSTALS , 1976 .

[13]  C. T. Moynihan,et al.  The order parameter model for structural relaxation in glass , 1978 .

[14]  L. Struik Physical aging in amorphous polymers and other materials , 1978 .

[15]  K L Ngai,et al.  Frequency Dependence of Dielectric Loss in Condensed Matter. , 1979 .

[16]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[17]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[18]  A. N. Garroway,et al.  Some molecular motions in epoxy polymers: a carbon-13 solid-state NMR study , 1982 .

[19]  E. Montroll,et al.  On 1/f noise and other distributions with long tails. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[20]  E. Helfand On inversion of the Williams–Watts function for large relaxation times , 1983 .