Improved assumed‐stress hybrid shell element with drilling degrees of freedom for linear stress, buckling and free vibration analyses

An improved 4-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger–Reissner variational principle and the shape functions are formulated directly for the 4-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has 9 independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling and linear free vibration problems. The element is validated with standard test cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.

[1]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[2]  David Sung-Soo Kang Hybrid stress finite element method , 1986 .

[3]  Robert D. Cook,et al.  On improved hybrid finite elements with rotational degrees of freedom , 1989 .

[4]  D. Allman A quadrilateral finite element including vertex rotations for plane elasticity analysis , 1988 .

[5]  Carlos A. Felippa,et al.  A triangular membrane element with rotational degrees of freedom , 1985 .

[6]  Caroline B. Stewart The computational structural mechanics testbed procedures manual , 1991 .

[7]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[8]  E. Reissner A note on variational principles in elasticity , 1965 .

[9]  Edward L. Wilson,et al.  A unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of freedom , 1991 .

[10]  John Robinson Four‐node quadrilateral stress membrane element with rotational stiffness , 1980 .

[11]  T. Pian,et al.  On the suppression of zero energy deformation modes , 1983 .

[12]  D. J. Allman,et al.  Evaluation of the constant strain triangle with drilling rotations , 1988 .

[13]  Gary M. Stanley,et al.  The computational structural mechanics testbed generic structural-element processor manual , 1990 .

[14]  Mohammad A. Aminpour Assessment of SPAR elements and formulation of some basic 2-D and 3-D elements for use with testbed generic element processor , 1989 .

[15]  David S. Kang,et al.  A new formulation of hybrid/mixed finite element , 1983 .

[16]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[17]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[18]  M. A. Aminpour,et al.  An assumed-stress hybrid 4-node shell element with drilling degrees of freedom , 1992 .

[19]  Robert D. Cook,et al.  On the Allman triangle and a related quadrilateral element , 1986 .

[20]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[21]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[22]  T. H. H. Pian Evolution of assumed stress hybrid finite element , 1984 .

[23]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[24]  M. A. Aminpour,et al.  Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom , 1992 .

[25]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[26]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[27]  S. Atluri,et al.  Formulation of a membrane finite element with drilling degrees of freedom , 1992 .

[28]  Edward L. Wilson,et al.  A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .

[29]  Robert L. Harder,et al.  A refined four-noded membrane element with rotational degrees of freedom , 1988 .

[30]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[31]  Kevin Forsberg Influence of Boundary Conditions on the Modal Characteristics of Thin Cylindrical Shells , 1963 .