Bi-Frobenius algebra structure on quantum complete intersections

This paper is to look for bi-Frobenius algebra structures on quantum complete intersections. We find a class of comultiplications, such that if $\sqrt{-1}\in k$, then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters $q_{ij} = \pm 1$. Also, it is proved that if $\sqrt{-1}\in k$ then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter $q = \pm 1$. While if $\sqrt{-1}\notin k$, then the exterior algebra with two variables admits no bi-Frobenius algebra structures. Since a quantum complete intersection over a field of characteristic zero admits no bialgebra structures, this gives a class of examples of bi-Frobenius algebras which are not bialgebras (and hence not Hopf algebras). On the other hand, a quantum exterior algebra admits a bialgebra structure if and only if ${\rm char} \ k = 2$. In commutative case, other two comultiplications on complete intersection rings are given, such that they admit non-isomorphic bi-Frobenius algebra structures.

[1]  Pu Zhang,et al.  Small modules over quantum complete intersections in two variables , 2020 .

[2]  C. Ringel,et al.  Gorenstein-projective and semi-Gorenstein-projective modules , 2018, Algebra & Number Theory.

[3]  René Marczinzik On stable modules that are not Gorenstein projective , 2017, 1709.01132.

[4]  Zhihua Wang,et al.  Green Rings of Pointed Rank One Hopf algebras of Nilpotent Type , 2014, 1409.0225.

[5]  Victor H. Moll Numbers and Functions: From a Classical-Experimental Mathematician's Point of View , 2012 .

[6]  Steffen Oppermann Hochschild cohomology and homology of quantum complete intersections , 2010 .

[7]  M. Lorenz Some applications of Frobenius algebras to Hopf algebras , 2010, 1008.4054.

[8]  Yukio Doi Group-Like Algebras and Their Representations , 2010 .

[9]  P. A. Bergh,et al.  The stable Auslander–Reiten quiver of a quantum complete intersection , 2009, 0909.5568.

[10]  P. A. Bergh Ext-symmetry over quantum complete intersections , 2008, 0811.4309.

[11]  P. A. Bergh,et al.  Cohomology of twisted tensor products , 2008, 0803.3689.

[12]  P. A. Bergh,et al.  The representation dimension of quantum complete intersections , 2007, 0710.2606.

[13]  Xiao-Wu Chen,et al.  Construct non-graded bi-Frobenius algebras via quivers , 2007 .

[14]  M. Haim Group-like algebras and Hadamard matrices , 2006, math/0602224.

[15]  E. Green,et al.  FINITE HOCHSCHILD COHOMOLOGY WITHOUT FINITE GLOBAL DIMENSION , 2004, math/0407108.

[16]  Pu Zhang,et al.  Construct bi-Frobenius algebras via quivers , 2004 .

[17]  Takayoshi Wakamatsu On Frobenius algebras , 2003 .

[18]  Yukio Doi Substructures of bi-Frobenius algebras , 2002 .

[19]  Claude Cibils,et al.  Hopf quivers , 2000, math/0009106.

[20]  L. Kadison New Examples of Frobenius Extensions , 1999 .

[21]  H. Schneider,et al.  Lifting of Quantum Linear Spaces and Pointed Hopf Algebras of Orderp3 , 1998, math/9803058.

[22]  I. Peeva,et al.  Complete intersection dimension , 1997 .

[23]  Shitian Liu,et al.  The existence of bounded infinite Tr-orbits , 1994 .

[24]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[25]  D. Radford The Order of the Antipode of a Finite Dimensional Hopf Algebra is Finite , 1976 .

[26]  C. Ringel The Liu-schulz Example , 2007 .

[27]  D. Simson Coalgebras, comodules, pseudocompact algebras and tame comodule type , 2001 .

[28]  Y. Manin Some remarks on Koszul algebras and quantum groups , 1987 .