Bi-Frobenius algebra structure on quantum complete intersections
暂无分享,去创建一个
[1] Pu Zhang,et al. Small modules over quantum complete intersections in two variables , 2020 .
[2] C. Ringel,et al. Gorenstein-projective and semi-Gorenstein-projective modules , 2018, Algebra & Number Theory.
[3] René Marczinzik. On stable modules that are not Gorenstein projective , 2017, 1709.01132.
[4] Zhihua Wang,et al. Green Rings of Pointed Rank One Hopf algebras of Nilpotent Type , 2014, 1409.0225.
[5] Victor H. Moll. Numbers and Functions: From a Classical-Experimental Mathematician's Point of View , 2012 .
[6] Steffen Oppermann. Hochschild cohomology and homology of quantum complete intersections , 2010 .
[7] M. Lorenz. Some applications of Frobenius algebras to Hopf algebras , 2010, 1008.4054.
[8] Yukio Doi. Group-Like Algebras and Their Representations , 2010 .
[9] P. A. Bergh,et al. The stable Auslander–Reiten quiver of a quantum complete intersection , 2009, 0909.5568.
[10] P. A. Bergh. Ext-symmetry over quantum complete intersections , 2008, 0811.4309.
[11] P. A. Bergh,et al. Cohomology of twisted tensor products , 2008, 0803.3689.
[12] P. A. Bergh,et al. The representation dimension of quantum complete intersections , 2007, 0710.2606.
[13] Xiao-Wu Chen,et al. Construct non-graded bi-Frobenius algebras via quivers , 2007 .
[14] M. Haim. Group-like algebras and Hadamard matrices , 2006, math/0602224.
[15] E. Green,et al. FINITE HOCHSCHILD COHOMOLOGY WITHOUT FINITE GLOBAL DIMENSION , 2004, math/0407108.
[16] Pu Zhang,et al. Construct bi-Frobenius algebras via quivers , 2004 .
[17] Takayoshi Wakamatsu. On Frobenius algebras , 2003 .
[18] Yukio Doi. Substructures of bi-Frobenius algebras , 2002 .
[19] Claude Cibils,et al. Hopf quivers , 2000, math/0009106.
[20] L. Kadison. New Examples of Frobenius Extensions , 1999 .
[21] H. Schneider,et al. Lifting of Quantum Linear Spaces and Pointed Hopf Algebras of Orderp3 , 1998, math/9803058.
[22] I. Peeva,et al. Complete intersection dimension , 1997 .
[23] Shitian Liu,et al. The existence of bounded infinite Tr-orbits , 1994 .
[24] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[25] D. Radford. The Order of the Antipode of a Finite Dimensional Hopf Algebra is Finite , 1976 .
[26] C. Ringel. The Liu-schulz Example , 2007 .
[27] D. Simson. Coalgebras, comodules, pseudocompact algebras and tame comodule type , 2001 .
[28] Y. Manin. Some remarks on Koszul algebras and quantum groups , 1987 .