Gas adsorption on MoS2 monolayer from first-principles calculations

[1]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[2]  L. Schultz,et al.  Metamagnetic effects in epitaxial BaFe1.8Cr0.2As2 thin films , 2012 .

[3]  V. Meunier,et al.  Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects , 2012 .

[4]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[5]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[6]  W. Liu,et al.  Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding , 2012, 1209.4345.

[7]  Donald J. Siegel,et al.  Comparing van der Waals Density Functionals for CO2 Adsorption in Metal Organic Frameworks , 2012 .

[8]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[9]  D. Hennig,et al.  Collective transport of coupled particles , 2012 .

[10]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[11]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[12]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[13]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[14]  J. Carrasco,et al.  To wet or not to wet? Dispersion forces tip the balance for water ice on metals. , 2010, Physical review letters.

[15]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[16]  Yi Cui,et al.  Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. , 2010, Nano letters.

[17]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[18]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[19]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[20]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[21]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[22]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Jianmin Yuan,et al.  Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study , 2009 .

[24]  J. Nørskov,et al.  Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2). , 2009, The Journal of chemical physics.

[25]  F. M. Peeters,et al.  Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study , 2007, 0710.1757.

[26]  K. Novoselov,et al.  Molecular doping of graphene. , 2007, Nano letters.

[27]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[28]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[29]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[30]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[31]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[33]  E. D. Crozier,et al.  Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension , 2002 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  M. E. Casida,et al.  Comparison of local‐density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities , 1993 .

[41]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[42]  S. Morrison,et al.  High activity catalyst from exfoliated MoS2 , 1987 .

[43]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[44]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[45]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[46]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .