Optical pulse compressor systems for laser fusion

The advantages and limitations of combined backward wave Raman pulse compression and pulse stacking for inertial fusion applications are discussed. A description of the major technological limitations which drive the designs of large (200 kJ) systems and some nominal systems parameters for a terawatt prototype stacker-compressor laser system are given. It is shown that aviable short wavelength laser fusion driver employing this concept can be expected to provide an overall power multiplication of 50 with a total systems efficiency of over 3 percent.

[1]  G. W. C. Kaye,et al.  Tables of Physical and Chemical Constants , 2018 .

[2]  M. J. Boyle,et al.  Laser‐fusion experiments utilizing a 4π illumination system , 1978 .

[3]  James A. Maniscalco,et al.  Fusion-fission hybrid concepts for laser-induced fusion , 1976 .

[4]  L.A. Booth,et al.  Prospects of generating power with laser-driven fusion , 1976, Proceedings of the IEEE.

[5]  J. Murray,et al.  Large‐signal gain and intensity enhancement in a backward Raman amplifier , 1978 .

[6]  A. K. Hays,et al.  High power uv noble‐gas‐halide laserf , 1976 .

[7]  W. Nighan Influence of molecular dissociation and degree of ionization on rare gas–halide laser properties , 1978 .

[8]  L. Champagne Efficient operation of the electron‐beam‐pumped XeCl laser , 1978 .

[9]  Haim Lotem,et al.  Absolute two-photon absorption coefficients at 355 and 266 nm , 1978 .

[10]  Laser Fusion , 1977, IEEE Transactions on Nuclear Science.

[11]  A. Glass Optical pulse compression , 1975 .

[12]  W. Long Electron kinetics in the KrF laser , 1977 .

[13]  J. Vanderslice,et al.  CONTROLLED GENERATION OF INTENSE LIGHT PULSES IN REVERSE‐PUMPED RAMAN LASERS , 1968 .

[14]  J. Murray,et al.  Backward Raman gain measurements for KrF laser radiation scattered by CH4 , 1978 .

[15]  J. J. Ewing,et al.  Laser action on the 2Σ+1/2→2Σ+1/2 bands of KrF and XeCl , 1975 .

[16]  R. Janda,et al.  Wavelength dependence of laser coupling to pellet implosions , 1977 .

[17]  W. F. Krupke,et al.  High Average Power, Rare-Gas Halogen-Pumped Iodine Laser For Fusion Applications , 1976, Other Conferences.

[18]  W. Nighan Influence of electron‐F2 collisions in rare gas–halide laser discharges , 1978 .

[19]  W. Nighan Plasma processes in electron-beam controlled rare-gas halide lasers , 1978 .

[20]  A. Glass 7.4 - Design considerations for Raman lasers , 1967 .

[21]  E. V. George,et al.  Advanced lasers for fusion applications , 1978 .

[22]  L. P. Bradley,et al.  Injection locking of a xenon fluoride laser , 1977 .

[23]  J Goldhar,et al.  Injection-locked, narrow-band KrF discharge laser using an unstable resonator cavity. , 1977, Optics letters.

[24]  J. Lindl Low aspect ratio double shells for high density and high gain , 1977 .

[25]  James J. Ewing Rare‐gas halide lasers , 1978 .

[26]  M. Rokni,et al.  Rare gas fluoride lasers , 1978 .