Optimizing RNA structures by sequence extensions using RNAcop

A key aspect of RNA secondary structure prediction is the identification of novel functional elements. This is a challenging task because these elements typically are embedded in longer transcripts where the borders between the element and flanking regions have to be defined. The flanking sequences impact the folding of the functional elements both at the level of computational analyses and when the element is extracted as a transcript for experimental analysis. Here, we analyze how different flanking region lengths impact folding into a constrained structure by computing probabilities of folding for different sizes of flanking regions. Our method, RNAcop (RNA context optimization by probability), is tested on known and de novo predicted structures. In vitro experiments support the computational analysis and suggest that for a number of structures, choosing proper lengths of flanking regions is critical. RNAcop is available as web server and stand-alone software via http://rth.dk/resources/rnacop.

[1]  E. Westhof,et al.  A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. , 1996, RNA.

[2]  Robert Giegerich,et al.  A comprehensive comparison of comparative RNA structure prediction approaches , 2004, BMC Bioinformatics.

[3]  R. Breaker,et al.  Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes , 2010, Genome Biology.

[4]  M. Nashimoto Distribution of both lengths and 5' terminal nucleotides of mammalian pre-tRNA 3' trailers reflects properties of 3' processing endoribonuclease. , 1997, Nucleic acids research.

[5]  Zasha Weinberg,et al.  CMfinder - a covariance model based RNA motif finding algorithm , 2006, Bioinform..

[6]  Eric Westhof,et al.  Distinctive structures between chimpanzee and human in a brain noncoding RNA. , 2008, RNA.

[7]  Xiu Lin,et al.  Facing growth in the European Nucleotide Archive , 2012, Nucleic Acids Res..

[8]  D. Karolchik,et al.  The UCSC Genome Browser database: 2016 update , 2015, bioRxiv.

[9]  J. Steitz,et al.  Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs , 2012, Proceedings of the National Academy of Sciences.

[10]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[11]  P. Avner,et al.  2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association , 2010, PLoS biology.

[12]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[13]  W. L. Ruzzo,et al.  De novo prediction of structured RNAs from genomic sequences. , 2010, Trends in biotechnology.

[14]  M. Hentze,et al.  Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Rolf Backofen,et al.  Global or local? Predicting secondary structure and accessibility in mRNAs , 2012, Nucleic acids research.

[16]  Jan Gorodkin,et al.  RNAsnp: Efficient Detection of Local RNA Secondary Structure Changes Induced by SNPs , 2013, Human mutation.

[17]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[18]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[19]  Alain Laederach,et al.  Disease-Associated Mutations That Alter the RNA Structural Ensemble , 2010, PLoS genetics.

[20]  D. Mathews,et al.  Improved RNA secondary structure prediction by maximizing expected pair accuracy. , 2009, RNA.

[21]  D. Haussler,et al.  FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing , 2010, Nature Methods.

[22]  Andrew E. Torda,et al.  RNA secondary structure diagrams for very large molecules: RNAfdl , 2013, Bioinform..

[23]  P. Stadler,et al.  Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome , 2005, Nature Biotechnology.

[24]  Angela Re,et al.  AURA: Atlas of UTR Regulatory Activity , 2012, Bioinform..

[25]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[26]  Jing-Dong Ye,et al.  An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. , 2012, RNA.

[27]  Daniel R. Zerbino,et al.  Ensembl 2014 , 2013, Nucleic Acids Res..

[28]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[29]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Peter F. Stadler,et al.  RNAsnp: Efficient Detection of Local RNA Secondary Structure Changes Induced by SNPs , 2013, Human Mutation.

[31]  W. L. Ruzzo,et al.  Genome scale search of noncoding rnas: bacteria to vertebrates , 2008 .

[32]  P. Stadler,et al.  LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. , 2012, RNA.

[33]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[34]  W. L. Ruzzo,et al.  Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions. , 2008, Genome research.

[35]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[36]  S. Wolin,et al.  The trials and travels of tRNA. , 1999, Genes & development.

[37]  D. Thirumalai,et al.  Folding of RNA involves parallel pathways. , 1997, Journal of molecular biology.

[38]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[39]  K. Weeks,et al.  RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). , 2005, Journal of the American Chemical Society.

[40]  Pascal Van Hentenryck,et al.  RNA Structural Segmentation , 2010, Pacific Symposium on Biocomputing.

[41]  R. Breaker,et al.  In-line probing analysis of riboswitches. , 2008, Methods in molecular biology.

[42]  Sonja J. Prohaska,et al.  Computational RNomics of Drosophilids , 2007, BMC Genomics.

[43]  M. Berry,et al.  Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. , 1993, The EMBO journal.

[44]  Masato Tamura,et al.  Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease , 1999, Nucleic Acids Res..

[45]  K. Weeks Advances in RNA structure analysis by chemical probing. , 2010, Current opinion in structural biology.

[46]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[47]  Jan Gorodkin,et al.  Structured RNAs and synteny regions in the pig genome , 2014, BMC Genomics.

[48]  Karissa Y. Sanbonmatsu,et al.  Sizing up long non-coding RNAs , 2012, Bioarchitecture.

[49]  Rhiju Das,et al.  Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. , 2012, Journal of the American Chemical Society.

[50]  Howard Y. Chang,et al.  Genome-wide measurement of RNA secondary structure in yeast , 2010, Nature.

[51]  Peter F. Stadler,et al.  Local RNA base pairing probabilities in large sequences , 2006, Bioinform..

[52]  Robert Giegerich,et al.  RNAshapes: an integrated RNA analysis package based on abstract shapes. , 2006, Bioinformatics.

[53]  Manolis Kellis,et al.  Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo , 2013, Nature.

[54]  W. Gilbert,et al.  Chemical probes for higher-order structure in RNA. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[55]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[56]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.