Effects of molecular symmetry on the directions of nuclear flux densities during tunnelling in double well potentials

Coherent tunnelling in molecular systems with cyclic and non-cyclic symmetric double well potentials may proceed with similar nuclear densities, but with entirely different flux densities. For sufficiently high potential barriers, the nuclear densities may even become indistinguishable, whereas the patterns of the flux densities at a given time remain pincer-motion type for the cyclic systems, but unidirectional for the non-cyclic one. This effect is traced back to symmetry breaking of the cyclic to the non-cyclic model. Accordingly, nuclear flux densities are much more sensitive to symmetry breaking than nuclear densities. For a proof of principle, the phenomenon is demonstrated by means of three one-dimensional models. The cyclic model I represents torsion in oriented B2Cl2F2, the non-cyclic model II is constructed from I by symmetry breaking and the non-cyclic model III represents tunnelling by inversion of oriented NH3.

[1]  O. Deeb,et al.  Molecular symmetry properties of conical intersections and nonadiabatic coupling terms: theory and quantum chemical demonstration for cyclopenta-2,4-dienimine (C5H4NH). , 2010, The journal of physical chemistry. A.

[2]  Y. Shigeta,et al.  Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin. , 2006, Journal of the American Chemical Society.

[3]  George M. Murphy,et al.  Chemical Applications of Group Theory. , 1964 .

[4]  M. Machholm,et al.  Field-free orientation of molecules. , 2001, Physical review letters.

[5]  T. Seideman,et al.  Nuclear spin selective laser control of rotational and torsional dynamics. , 2012, The Journal of chemical physics.

[6]  H. Ohmura,et al.  Quantum control of molecular orientation by two-color laser fields. , 2004, The Journal of chemical physics.

[7]  Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: application to the hydrogen molecule ion. , 2012, The journal of physical chemistry. A.

[8]  G. Tranter,et al.  The parity-violating energy difference between enantiomeric molecules , 1983 .

[9]  F. Y. Hansen,et al.  Theories of Molecular Reaction Dynamics , 2008 .

[10]  M. Quack,et al.  Isotopeneffekte durch Paritätsverletzung in chiralen Molekülen , 2005 .

[11]  M. Quack,et al.  Representation of parity violating potentials in molecular main chiral axes , 1999 .

[12]  Tim Bredtmann,et al.  Elektronenflüsse zwischen benachbarten Bindungen bei pericyclischen Reaktionen: synchron oder asynchron? , 2011 .

[13]  Mode selective stereomutation and parity violation in disulfane isotopomers H2S2, D2S2, T2S2 , 2001 .

[14]  J. Manz,et al.  Anregung periodischer Elektronen‐Kreisbewegung durch circular polarisierte Laserpulse: quantenmechanische Modell‐Simulationen für Mg‐Porphyrin , 2006 .

[15]  M. Quack Structure and Dynamics of Chiral Molecules , 1989 .

[16]  M. Quack Detailed symmetry selection rules for reactive collisions , 1977 .

[17]  Computation of the electronic flux density in the Born-Oppenheimer approximation. , 2013, The journal of physical chemistry. A.

[18]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[19]  H. Kono,et al.  Control of pi-electron rotation in chiral aromatic molecules by nonhelical laser pulses. , 2006, Angewandte Chemie.

[20]  A. Bandrauk,et al.  High-order-harmonic generation from coherent electron wave packets in atoms and molecules as a tool for monitoring attosecond electrons , 2012 .

[21]  Henrik Stapelfeldt,et al.  Colloquium: Aligning molecules with strong laser pulses , 2003 .

[22]  M. Quack,et al.  Molecular chirality and the fundamental symmetries of physics: influence of parity violation on rovibrational frequencies and thermodynamic properties. , 2001, Chirality.

[23]  Martin Quack,et al.  Handbook of High-resolution Spectroscopy , 2011 .

[24]  M. Quack,et al.  Electroweak quantum chemistry of alanine: parity violation in gas and condensed phases. , 2000, ChemPhysChem.

[25]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[26]  Yukiyoshi Ohtsuki,et al.  Optimal control simulation of field-free molecular orientation: alignment-enhanced molecular orientation. , 2012, The journal of physical chemistry. A.

[27]  J. Manz,et al.  Electronic bond-to-bond fluxes in pericyclic reactions: synchronous or asynchronous? , 2011, Angewandte Chemie.

[28]  T. Seideman,et al.  Toward separation of nuclear spin isomers with coherent light. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  H. Kono,et al.  Nuclear flux densities during a model pericyclic reaction with energies well above and below the potential barrier. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  I. Averbukh,et al.  Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor. , 2001, Physical review letters.

[31]  F. Y. Hansen,et al.  Theories of molecular reaction dynamics : the microscopic foundation of chemical kinetics , 2008 .

[32]  P. Schwerdtfeger The Search for Parity Violation in Chiral Molecules , 2010 .

[33]  A. Bandrauk,et al.  Monitoring attosecond dynamics of coherent electron-nuclear wave packets by molecular high-order-harmonic generation , 2011 .

[34]  I. Thanopulos,et al.  A global electric dipole function of ammonia and isotopomers in the electronic ground state , 2003 .

[35]  L. Stodolsky,et al.  Quantum beats in optical activity and weak interactions , 1978 .

[36]  Hirohiko Kono,et al.  Quantum optimal control of electron ring currents in chiral aromatic molecules. , 2007, The Journal of chemical physics.

[37]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[38]  C. Bressler,et al.  Strong nuclear ring currents and magnetic fields in pseudorotating OsH4 molecules induced by circularly polarized laser pulses. , 2012, Chemistry, an Asian journal.

[39]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[40]  J. Laane Frontiers of molecular spectroscopy , 2009 .

[41]  Martin Quack,et al.  How important is parity violation for molecular and biomolecular chirality? , 2002, Angewandte Chemie.

[42]  G. Meijer,et al.  Laser-induced alignment and orientation of quantum-state-selected large molecules. , 2008, Physical review letters.

[43]  P. Jensen,et al.  Spectroscopy and Broken Symmetry , 2009 .

[44]  J. Manz,et al.  Towards Toroidal Hydrogen Bonds , 2008 .

[45]  Martin Quack,et al.  High-resolution spectroscopic studies and theory of parity violation in chiral molecules. , 2008, Annual review of physical chemistry.

[46]  J. R. Letelier,et al.  A numerical molecular potential for the umbrella inversion in ammonia , 1997 .

[47]  I. Thanopulos,et al.  Tunneling dynamics of the NH chromophore in NHD2 during and after coherent infrared excitation , 2003 .

[48]  J. L. Hansen,et al.  Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields. , 2009, The Journal of chemical physics.

[49]  H. Kono,et al.  Nonadiabatic response model of laser-induced ultrafast pi-electron rotations in chiral aromatic molecules. , 2010, Physical review letters.

[50]  Douglas J. Klein,et al.  Group Theory and Chemistry , 1973 .

[51]  D. J. Diestler Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals. , 2012, The journal of physical chemistry. A.

[52]  M. Quack,et al.  Isotopic chirality and molecular parity violation. , 2005, Angewandte Chemie.

[53]  J. Manz,et al.  Periodic electron circulation induced by circularly polarized laser pulses: quantum model simulations for Mg porphyrin. , 2006, Angewandte Chemie.

[54]  M. Quack,et al.  The NH and ND stretching fundamentals of 14ND2H , 2003 .

[55]  Takayuki Suzuki,et al.  Controlling the orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields. , 2003 .

[56]  Roald Hoffmann,et al.  Die Erhaltung der Orbitalsymmetrie , 1969 .

[57]  J. Manz,et al.  Design of circularly polarized laser pulses for periodic electron circulation in Mg-porphyrin , 2006 .

[58]  M. Quack On the measurement of the parity violating energy difference between enantiomers , 1986 .

[59]  D. Luckhaus,et al.  6D vibrational quantum dynamics: Generalized coordinate discrete variable representation and (a)diabatic contraction , 2000 .

[60]  I. Averbukh,et al.  Laser-induced selective alignment of water spin isomers , 2008, 0809.4626.

[61]  André D. Bandrauk,et al.  Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN , 1999 .

[62]  E. Arimondo,et al.  Observation of inverted infrared lamb dips in separated optical isomers , 1977 .

[63]  M. Quack Struktur und Dynamik chiraler Moleküle , 1989 .

[64]  J. Grunenberg Computational Spectroscopy: Methods, Experiments and Applications , 2010 .

[65]  V. Letokhov On difference of energy levels of left and right molecules due to weak interactions , 1975 .

[66]  D. Herschbach,et al.  Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces , 1999 .

[67]  O. Deeb,et al.  Quantum separation of para- and ortho-fulvene with coherent light: The influence of the conical intersection , 2007 .

[68]  W. Miller Periodic orbit description of tunneling in symmetric and asymmetric double-well potentials , 1979 .

[69]  M. Quack,et al.  Paritätsverletzung dominiert die Dynamik der Chiralität in Dischwefeldichlorid , 2001 .

[70]  K. Naidoo,et al.  Modelling molecular structure and reactivity in biological systems , 2006 .

[71]  M. Leibscher,et al.  Quantum-dynamical consequences of the permutation symmetry of methyl groups. , 2010, The Journal of chemical physics.

[72]  P. Bakken,et al.  Conformational structures, rotational barrier heights and torsional force constants in diboronhalide molecules Y2B-BX2 and YXB-BXY obtained by molecular mechanics calculations , 1990 .

[73]  M. Leibscher,et al.  Nuclear spin selective alignment of ethylene and analogues. , 2011, The Journal of chemical physics.

[74]  O. Deeb,et al.  Photoinduced quantum dynamics of ortho- and para-fulvene: hindered photoisomerization due to mode selective fast radiationless decay via a conical intersection. , 2009, The Journal of chemical physics.

[75]  Soncini,et al.  Parity-violating effects in asymmetric chemical reactions: A theoretical study on the CHFClBr molecule , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  M. Quack,et al.  Stereomutation tunneling switching dynamics and parity violation in chlorineperoxide Cl-O-O-Cl. , 2006, The journal of physical chemistry. A.

[77]  S. Belz,et al.  Quantum dynamical simulations for nuclear spin selective laser control of ortho- and para-fulvene. , 2009, The Journal of chemical physics.

[78]  M. Quack,et al.  Parity Violation Dominates the Dynamics of Chirality in Dichlorodisulfane. , 2001, Angewandte Chemie.

[79]  D. Herschbach,et al.  Manipulating Molecules via Combined Static and Laser Fields , 1999 .