A knowledge-based approach for discriminating multi-crop scenarios using multi-temporal polarimetric SAR parameters

ABSTRACT In this article, we evaluate a series of POLSAR (Polarimetric Synthetic Aperture Radar) parameters and devise a robust, multi-date, and hierarchical decision tree algorithm for crop discrimination. The study area is a farmland in North India having relatively large patches of winter crops with medium heterogeneity. Ten POLSAR parameters are evaluated for this work including polarimetric entropy (), polarimetric alpha angle (), Yamaguchi decomposition components, radar vegetation index (RVI), volume scattering index, canopy scattering index, biomass index, and pedestal height (PH). We choose polarimetric RVI, polarimetric entropy, and polarimetric alpha angle parameter, after sensitivity analysis, to be incorporated into building the multi-temporal POLSAR decision tree. The proposed algorithm accepts, as input, a precisely co-registered multi-date stack of fully POLSAR imagery. The algorithm makes use of the temporal profiles of the selected POLSAR parameters in achieving the crop discrimination. We provide a quantitative assessment of classification accuracy of various classes based on extensive ground truth data. The multi-temporal algorithm is compared with the well-established, single-date, supervised Wishart classifier. Statistically significant improvement of accuracies is observed across various classes as compared to single-date methodology. Our study suggests that whenever ground truth data are extensively available, a supervised classifier based on carefully chosen multi-temporal POLSAR parameters yield very compelling crop discrimination capabilities.

[1]  Thomas J. Jackson,et al.  Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean , 2012, IEEE Geoscience and Remote Sensing Letters.

[2]  Giles M. Foody,et al.  Crop classification from C-band polarimetric radar data , 1994 .

[3]  Manab Chakraborty,et al.  Time series analysis of co-polarization phase difference (PPD) for winter field crops using polarimetric C-band SAR data , 2016 .

[4]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  R. S. Gopalan,et al.  Assessment of paddy performance under BGREI initiative using RISAT SAR data , 2017, Paddy and Water Environment.

[6]  Nataliia Kussul,et al.  Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[7]  Jakob van Zyl,et al.  Synthetic Aperture Radar Polarimetry: van Zyl/Synthetic Aperture , 2011 .

[8]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Jack F. Paris,et al.  Radar remote sensing of forest and wetland ecosystems in the Central American tropics , 1994 .

[10]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[12]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[13]  Arundhati Misra,et al.  EVALUATION OF HYBRID POLARIMETRIC DECOMPOSITION TECHNIQUES FOR WINTER CROP DISCRIMINATION , 2017 .

[14]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[15]  B. Bouman,et al.  Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands. , 1993 .

[16]  P. Mather,et al.  Crop discrimination using multi-temporal SAR imagery , 1999 .

[17]  C. G. J. Schotten,et al.  Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops , 1995 .

[18]  H. Skriver,et al.  Complex Wishart Distribution Based Analysis of Polarimetric Synthetic Aperture Radar Data , 2007, 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images.

[19]  Yunjin Kim,et al.  Comparison of forest parameter estimation techniques using SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[20]  Jakob J. van Zyl,et al.  A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  E. Pottier,et al.  Concept of polarization entropy in optical scattering , 1995 .

[23]  Manab Chakraborty,et al.  ASSESSMENT OF L-BAND SAR DATA AT DIFFERENT POLARIZATION COMBINATIONS FOR CROP AND OTHER LANDUSE CLASSIFICATION , 2012 .

[24]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[25]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[26]  George Miliaresis,et al.  Synthetic Aperture Radar Polarimetry , 2014 .

[27]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .