Sparse Distributed Learning Based on Diffusion Adaptation

This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process over the network. The resulting algorithms endow networks with learning abilities and allow them to learn the sparse structure from the incoming data in real-time, and also to track variations in the sparsity of the model. We provide convergence and mean-square performance analysis of the proposed method and show under what conditions it outperforms the unregularized diffusion version. We also show how to adaptively select the regularization parameter. Simulation results illustrate the advantage of the proposed filters for sparse data recovery.

[1]  Carlos S. Kubrusly,et al.  Stochastic approximation algorithms and applications , 1973, CDC 1973.

[2]  Donald L. Duttweiler,et al.  Proportionate normalized least-mean-squares adaptation in echo cancelers , 2000, IEEE Trans. Speech Audio Process..

[3]  Iven M. Y. Mareels,et al.  LMS estimation via structural detection , 1998, IEEE Trans. Signal Process..

[4]  Alfred O. Hero,et al.  Sparse LMS for system identification , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[5]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[6]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[7]  Dimitri P. Bertsekas,et al.  A New Class of Incremental Gradient Methods for Least Squares Problems , 1997, SIAM J. Optim..

[8]  Isao Yamada,et al.  A sparse adaptive filtering using time-varying soft-thresholding techniques , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Ali H. Sayed,et al.  Sparse diffusion LMS for distributed adaptive estimation , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Vahid Tarokh,et al.  SPARLS: The Sparse RLS Algorithm , 2010, IEEE Transactions on Signal Processing.

[11]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[12]  D. Etter,et al.  Identification of sparse impulse response systems using an adaptive delay filter , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Ali H. Sayed,et al.  Modeling Bird Flight Formations Using Diffusion Adaptation , 2011, IEEE Transactions on Signal Processing.

[14]  Sergios Theodoridis,et al.  Adaptive Robust Distributed Learning in Diffusion Sensor Networks , 2011, IEEE Transactions on Signal Processing.

[15]  Ali H. Sayed,et al.  Collaborative learning of mixture models using diffusion adaptation , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.

[16]  Zhaoyang Zhang,et al.  Diffusion Sparse Least-Mean Squares Over Networks , 2012, IEEE Transactions on Signal Processing.

[17]  M. Hatori,et al.  A TAP selection algorithm for adaptive filters , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[18]  Arian Maleki,et al.  Optimally Tuned Iterative Reconstruction Algorithms for Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[19]  S. Haykin Adaptive Filters , 2007 .

[20]  Kun Tang,et al.  Parallel Nlms Filters with Stochastic Active Taps and Step-Sizes for Sparse System Identification , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  Ali H. Sayed,et al.  Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks , 2011, IEEE Transactions on Signal Processing.

[23]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[24]  Dimitri P. Bertsekas,et al.  Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..

[25]  Sergios Theodoridis,et al.  A Sparsity Promoting Adaptive Algorithm for Distributed Learning , 2012, IEEE Transactions on Signal Processing.

[26]  Ioannis D. Schizas,et al.  Distributed LMS for Consensus-Based In-Network Adaptive Processing , 2009, IEEE Transactions on Signal Processing.

[27]  Ali H. Sayed,et al.  Mobile Adaptive Networks , 2011, IEEE Journal of Selected Topics in Signal Processing.

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[29]  Ali H. Sayed,et al.  Incremental Adaptive Strategies Over Distributed Networks , 2007, IEEE Transactions on Signal Processing.

[30]  Jianshu Chen,et al.  Bacterial motility via diffusion adaptation , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[31]  Ali H. Sayed,et al.  Diffusion Adaptation over Networks , 2012, ArXiv.

[32]  Sergios Theodoridis,et al.  Trading off communications bandwidth with accuracy in adaptive diffusion networks , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[34]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[35]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[36]  B GiannakisGeorgios,et al.  Distributed sparse linear regression , 2010 .

[37]  Sergios Theodoridis,et al.  Adaptive Learning in a World of Projections , 2011, IEEE Signal Processing Magazine.

[38]  Gonzalo Mateos,et al.  Distributed Sparse Linear Regression , 2010, IEEE Transactions on Signal Processing.

[39]  Alfred O. Hero,et al.  Partial update LMS algorithms , 2005, IEEE Transactions on Signal Processing.

[40]  João M. F. Xavier,et al.  Distributed Basis Pursuit , 2010, IEEE Transactions on Signal Processing.

[41]  Isao Yamada,et al.  Diffusion Least-Mean Squares With Adaptive Combiners: Formulation and Performance Analysis , 2010, IEEE Transactions on Signal Processing.

[42]  Georgios B. Giannakis,et al.  Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity , 2010, IEEE Transactions on Signal Processing.

[43]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks: Formulation and Performance Analysis , 2008, IEEE Transactions on Signal Processing.

[44]  Ali H. Sayed,et al.  Diffusion LMS Strategies for Distributed Estimation , 2010, IEEE Transactions on Signal Processing.

[45]  Ali H. Sayed,et al.  Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm , 2010, IEEE Transactions on Signal Processing.

[46]  Ali H. Sayed,et al.  Bio-inspired swarming for dynamic radio access based on diffusion adaptation , 2011, 2011 19th European Signal Processing Conference.

[47]  Sergios Theodoridis,et al.  Online Sparse System Identification and Signal Reconstruction Using Projections Onto Weighted $\ell_{1}$ Balls , 2010, IEEE Transactions on Signal Processing.

[48]  Robert D. Nowak,et al.  Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.

[49]  Peng Shi,et al.  Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal , 2010, Signal Process..

[50]  Georgios B. Giannakis,et al.  Online Adaptive Estimation of Sparse Signals: Where RLS Meets the $\ell_1$ -Norm , 2010, IEEE Transactions on Signal Processing.