The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function

We estimate the dust temperatures of the clumps in the ρ Oph main cloud taking into account the 3D geometry of the region, and external heating from the interstellar radiation field and from HD 147879, a nearby luminous B2V star, which is believed to dominate the radiation field in the region. We find that the regions where pre-stellar cores are observed (i.e. at optical visual extinctions >7 mag) are colder than ∼10 –11 K. These dust temperatures are smaller than those which previous studies of the same region have assumed. We use the new dust temperatures to estimate the masses of the pre-stellar cores in the ρ Oph main cloud from millimetre observations, and we find core masses that are larger than previous estimates by a factor of ∼2 –3. This affects the core mass function (CMF) of the region; we find that the mass at which the core mass spectrum steepens from a slope α∼ 1.5 to a slope α∼ 2.5 has moved from ∼0.5 to ∼1 M⊙. In contrast with the CMF in other star-forming regions (e.g. Orion), there is no indication for a turnover down to the completeness limit (∼0.2 M⊙), but the CMF may flatten at around ∼0.4 M⊙. We generalize our results to the pre-stellar cores in Taurus and in Orion. In Taurus, the ambient radiation field heating the pre-stellar cores is believed to be weaker than that in ρ Oph. Hence, the dust temperatures of the cores in Taurus are expected to be below ∼10 –11 K. In Orion, the radiation field is believed to be 103 times stronger than the standard interstellar radiation field. Based on this assumption, we estimate that the dust temperatures of the pre-stellar cores in Orion are around ∼20 –30 K.

[1]  A. Goodman,et al.  The Effect of Noise in Dust Emission Maps on the Derivation of Column Density, Temperature, and Emissivity Spectral Index , 2006, astro-ph/0611535.

[2]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[3]  P. Andre',et al.  A SCUBA survey of L1689 ¿ the dog that didn't bark , 2006, astro-ph/0603203.

[4]  M. Lombardi,et al.  The COMPLETE Survey of Star-Forming Regions: Phase I Data , 2006, astro-ph/0602542.

[5]  D. Johnstone,et al.  The Large- and Small-Scale Structures of Dust in the Star-forming Perseus Molecular Cloud , 2006, astro-ph/0602089.

[6]  J. Bally,et al.  Large-Area Mapping at 850 μm. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud , 2005, astro-ph/0512382.

[7]  D. Johnstone,et al.  The effect of a strong external radiation field on protostellar envelopes in Orion , 2005, astro-ph/0512314.

[8]  Three-dimensional Models of Embedded High-Mass Stars: Effects of a Clumpy Circumstellar Medium , 2005, astro-ph/0509073.

[9]  A. Whitworth,et al.  How to identify the youngest protostars , 2005, astro-ph/0505291.

[10]  Dimitris StamatellosAnthony Whitworth Monte Carlo radiative transfer in SPH density fields , 2005, astro-ph/0505289.

[11]  D. Ward-Thompson,et al.  The initial conditions of isolated star formation — VI. SCUBA mapping of pre-stellar cores , 2005, astro-ph/0505190.

[12]  A. Whitworth,et al.  Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment , 2005, astro-ph/0504037.

[13]  A. Goodman,et al.  Density and Temperature Structure of TMC-1C from 450 and 850 Micron Maps , 2005, astro-ph/0502024.

[14]  D. Johnstone,et al.  An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.

[15]  France.,et al.  Radiative transfer models of non-spherical prestellar cores , 2004, astro-ph/0404443.

[16]  S. Goodwin,et al.  Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity , 2003, astro-ph/0309829.

[17]  D. Whitworth Monte Carlo radiative transfer in embedded prestellar cores , 2003, astro-ph/0307172.

[18]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[19]  J. Lépine,et al.  Open issues in local star formation , 2003 .

[20]  C. Curry,et al.  SFChem 2002: Chemistry as a Diagnostic of Star Formation , 2003 .

[21]  P. Andre',et al.  The initial conditions of isolated star formation – V. ISOPHOT imaging and the temperature and energy balance of pre stellar cores , 2001, astro-ph/0109173.

[22]  D. Johnstone,et al.  A Submillimeter Dust and Gas Study of the Orion B Molecular Cloud , 2001 .

[23]  P. Andre',et al.  A SCUBA survey of the NGC 2068/2071 protoclusters , 2001 .

[24]  A. A. Kaas,et al.  ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster , 2001, astro-ph/0103373.

[25]  K. Wood,et al.  Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer , 2001, astro-ph/0103249.

[26]  J. Alves,et al.  Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight , 2001, Nature.

[27]  A. Whitworth,et al.  An Empirical Model for Protostellar Collapse , 2000, astro-ph/0009325.

[28]  D. Johnstone,et al.  Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .

[29]  L. Mundy,et al.  Tracing the Mass during Low-Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores , 2000, astro-ph/0006183.

[30]  F. Motte,et al.  The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .

[31]  P. Andre',et al.  A submillimetre continuum survey of pre-protostellar cores , 1994 .

[32]  P. Andre',et al.  From T Tauri stars to protostars: Circumstellar material and young stellar objects in the rho Ophiuchi cloud , 1994 .

[33]  R. Cutri,et al.  The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds : conference held 7-9 April 1993, Tucson, Arizona , 1994 .

[34]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[35]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[36]  E. Young,et al.  IRAS Observations of the Rho Ophiuchi Infrared Cluster: Spectral Energy Distributions and Luminosity Function , 1989 .

[37]  P. Myers,et al.  Dense cores in dark clouds. II. NH3 observations and star formation. , 1983 .

[38]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[39]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .