The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena

Transport-dominated phenomena provide a challenge for common mode-based model reduction approaches. We present a model reduction method, which is suited for these kind of systems. It extends the proper orthogonal decomposition (POD) by introducing time-dependent shifts of the snapshot matrix. The approach, called shifted proper orthogonal decomposition (sPOD), features a determination of the {\it multiple} transport velocities and a separation of these. One- and two-dimensional test examples reveal the good performance of the sPOD for transport-dominated phenomena and its superiority in comparison to the POD.

[1]  P. E. Bernatz,et al.  How conservative? , 1971, The Annals of thoracic surgery.

[2]  Jacquelien M. A. Scherpen,et al.  Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value Analysis , 2010, SIAM J. Control. Optim..

[3]  Francesco Fedele,et al.  Symmetry reduction of turbulent pipe flows , 2014, Journal of Fluid Mechanics.

[4]  Serkan Gugercin,et al.  Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .

[5]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[6]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[7]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[8]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[9]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[10]  G. Iaccarino,et al.  Reduced order models for parameterized hyperbolic conservations laws with shock reconstruction , 2012 .

[11]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[12]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[13]  Jean-Frédéric Gerbeau,et al.  Approximated Lax pairs for the reduced order integration of nonlinear evolution equations , 2014, J. Comput. Phys..

[14]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[15]  Jens L. Eftang,et al.  Reduced basis methods for parametrized partial differential equations , 2011 .

[16]  Paul Deheuvels,et al.  A Karhunen–Loeve decomposition of a Gaussian process generated by independent pairs of exponential random variables , 2008 .

[17]  Bernard Haasdonk,et al.  Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems , 2015, Comput. Optim. Appl..

[18]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[19]  Benjamin Stamm,et al.  Model Order Reduction for Problems with Large Convection Effects , 2018, Computational Methods in Applied Sciences.

[20]  Jörn Sesterhenn,et al.  Model Reduction of Reactive Processes , 2015 .

[21]  Maciej Balajewicz,et al.  Lagrangian basis method for dimensionality reduction of convection dominated nonlinear flows , 2017, ArXiv.

[22]  Julius Reiss,et al.  A Family of Energy Stable, Skew-Symmetric Finite Difference Schemes on Collocated Grids , 2014, J. Sci. Comput..

[23]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[24]  Jörn Sesterhenn,et al.  A Lagrangian Dynamic Mode Decomposition , 2016 .

[25]  Clarence W. Rowley,et al.  An improved algorithm for balanced POD through an analytic treatment of impulse response tails , 2012, J. Comput. Phys..

[26]  David J. Lucia,et al.  Reduced Order Modeling For High Speed Flows with Moving Shocks , 2001 .

[27]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Angelo Iollo,et al.  Advection modes by optimal mass transfer. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[31]  Rémi Abgrall,et al.  Robust model reduction by $$L^{1}$$L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems , 2016, Adv. Model. Simul. Eng. Sci..

[32]  Thomas J. Barber,et al.  POD Snapshot Data Reduction For Periodic Fluid Flows , 2005 .

[33]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[34]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[35]  G. Welper,et al.  Transformed snapshot interpolation , 2015, 1505.01227.

[36]  Christophe Bailly,et al.  A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations , 2009, J. Comput. Phys..

[37]  Martin A. Grepl,et al.  CERTIFIED REDUCED BASIS METHODS FOR NONAFFINE LINEAR TIME-VARYING AND NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[38]  B. Haasdonk,et al.  Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition , 2011 .

[39]  Donsub Rim,et al.  Transport Reversal for Model Reduction of Hyperbolic Partial Differential Equations , 2017, SIAM/ASA J. Uncertain. Quantification.

[40]  Serkan Gugercin,et al.  Interpolatory projection methods for structure-preserving model reduction , 2009, Syst. Control. Lett..

[41]  J. Marsden,et al.  Reduction and reconstruction for self-similar dynamical systems , 2002 .

[42]  Kevin Carlberg,et al.  Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.

[43]  Julius Reiss,et al.  A conservative, skew-symmetric Finite Difference Scheme for the compressible Navier--Stokes Equations , 2013, 1308.6672.

[44]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[45]  Wolf-Jürgen Beyn,et al.  Freezing Solutions of Equivariant Evolution Equations , 2004, SIAM J. Appl. Dyn. Syst..