Compliance calibration for fracture testing of equine cortical bone.

[1]  Y. Yeni,et al.  Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft. , 2000, Journal of biomedical materials research.

[2]  D Vashishth,et al.  Crack growth resistance in cortical bone: concept of microcrack toughening. , 1997, Journal of biomechanics.

[3]  J H Keyak,et al.  The distribution of material properties in the equine third metacarpal bone serves to enhance sagittal bending. , 1997, Journal of biomechanics.

[4]  D B Burr,et al.  Resistance to crack growth in human cortical bone is greater in shear than in tension. , 1996, Journal of biomechanics.

[5]  D Vashishth,et al.  Fracture toughness of human bone under tension. , 1995, Journal of biomechanics.

[6]  V. Li,et al.  New development of the J-based fracture testing technique for ceramic-matrix composites , 1994 .

[7]  D Vashishth,et al.  Effect of groove on bone fracture toughness. , 1991, Journal of biomechanics.

[8]  W. Bonfield,et al.  Crack velocity dependence of longitudinal fracture in bone , 1980 .

[9]  Ashok Saxena,et al.  Review and extension of compliance information for common crack growth specimens , 1978 .

[10]  W. Bonfield,et al.  Orientation dependence of the fracture mechanics of cortical bone. , 1989, Journal of biomechanics.

[11]  W. Bonfield,et al.  Fracture mechanics of bone--the effects of density, specimen thickness and crack velocity on longitudinal fracture. , 1984, Journal of biomechanics.

[12]  W C Hayes,et al.  Fracture mechanics parameters for compact bone--effects of density and specimen thickness. , 1977, Journal of biomechanics.

[13]  W. Bonfield,et al.  Fracture toughness of compact bone. , 1976, Journal of biomechanics.