MFIX-Exa: A path toward exascale CFD-DEM simulations

MFIX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to run efficiently on current and next-generation supercomputing architectures. MFIX-Exa combines the CFD-DEM expertise embodied in the MFIX code—which was developed at NETL and is used widely in academia and industry—with the modern software framework, AMReX, developed at LBNL. The fundamental physics models follow those of the original MFIX, but the combination of new algorithmic approaches and a new software infrastructure will enable MFIX-Exa to leverage future exascale machines to optimize the modeling and design of multiphase chemical reactors.

[1]  Lynn F. Gladden,et al.  Validation of a discrete element model using magnetic resonance measurements , 2009 .

[2]  R. Breault,et al.  12th International Conference on Fluidized Bed Technology PERFORMANCE OF A RAW HEMATITE AND A MANUFACTURED COPPER-IRON OXYGEN CARRIER IN A 50-KW NATURAL GAS CHEMICAL LOOPING SYSTEM , 2018 .

[3]  Rahul Garg,et al.  Documentation of open-source MFIX–DEM software for gas-solids flows , 2010 .

[4]  Lynn F. Gladden,et al.  Granular temperature: Comparison of Magnetic Resonance measurements with Discrete Element Model simulations , 2008 .

[5]  Aslak Tveito,et al.  Numerical solution of partial differential equations on parallel computers , 2006 .

[6]  Josette Bellan,et al.  Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed , 2001 .

[7]  J. Kuipers,et al.  A New Drag Correlation from Fully Resolved Simulations of Flow Past Monodisperse Static Arrays of Spheres , 2015 .

[8]  Oa Us Epa Sources of Greenhouse Gas Emissions , 2015 .

[9]  Ann Almgren,et al.  AMReX: Block-structured adaptive mesh refinement for multiphysics applications , 2020, Int. J. High Perform. Comput. Appl..

[10]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[11]  Olivier Desjardins,et al.  An Euler-Lagrange strategy for simulating particle-laden flows , 2013, J. Comput. Phys..

[12]  Jam Hans Kuipers,et al.  Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidized beds , 2003 .

[13]  R. Breault,et al.  Minimum spouting velocity of flat-base spouted fluid bed , 2018 .

[14]  Madhava Syamlal,et al.  Measurements of pressure drop and particle velocity in a pseudo 2-D rectangular bed with Geldart Group D particles , 2016 .

[15]  Ann S. Almgren,et al.  Benchmarking of a preliminary MFiX-Exa code , 2019, 1909.02067.

[16]  Robert D. Falgout,et al.  The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners , 2006 .

[17]  William L. Oberkampf,et al.  Guide for the verification and validation of computational fluid dynamics simulations , 1998 .

[18]  S. Pannala,et al.  Open-source MFIX-DEM software for gas-solids flows: Part I – verification studies , 2012 .

[19]  D. Gidaspow,et al.  A bubbling fluidization model using kinetic theory of granular flow , 1990 .

[20]  S. Tenneti,et al.  Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development , 2014 .

[21]  Daniel Sunderland,et al.  Kokkos: Enabling manycore performance portability through polymorphic memory access patterns , 2014, J. Parallel Distributed Comput..

[22]  Ng Niels Deen,et al.  Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy , 2008 .

[23]  Jpk Seville,et al.  PEPT and discrete particle simulation study of spout‐fluid bed regimes , 2008 .

[24]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..

[25]  Olga Pearce,et al.  RAJA: Portable Performance for Large-Scale Scientific Applications , 2019, 2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC).

[26]  Ng Niels Deen,et al.  Review of discrete particle modeling of fluidized beds , 2007 .

[27]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[28]  K. B. Mathur,et al.  A technique for contacting gases with coarse solid particles , 1955 .

[29]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[30]  C. Wen Mechanics of Fluidization , 1966 .

[31]  J. Kuipers,et al.  Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres , 2007 .