Electrical scanning probe microscopy of electronic and photonic devices: connecting internal mechanisms with external measures

Abstract The inner workings of semiconductor electronic and photonic devices, such as dopants, free charge carriers, electric potential, and electric field, are playing a crucial role in the function and performance of the devices. Electrical scanning probe microscopy (SPM) techniques have been developed and deployed to measure, with nanometric spatial resolution and high quantitative accuracy, the two-dimensional profiles of dopant, potential, electric field, and free carrier distribution, within unbiased and/or operating electronic and photonic devices. In this review paper, we summarize our latest SPM experimental results, including the scanning spreading resistance microscopy and scanning capacitance microscopy of terahertz quantum cascade lasers, scanning capacitance microscopy of non-volatile memory devices, scanning voltage microscopy of terahertz quantum cascade lasers, and scanning voltage microscopy of interband cascade lasers. Interpretation of the measured quantities are presented and calibrated, demonstrating that important internal physical quantities and inner mechanisms of device operation can be uncovered. It reveals that the novel SPM techniques would find more applications to the emerging semiconductor quantum devices and nanoelectronics.

[1]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[2]  Ahmed Ali,et al.  Fabrication of nano ion–electron sources and nano-probes by local electron bombardment , 2015 .

[3]  Rui Q. Yang,et al.  Nanoscopically resolved dynamic charge‐carrier distribution in operating interband cascade lasers , 2015 .

[4]  Chao Xu,et al.  Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures , 2014, Scientific Reports.

[5]  Hao Ye,et al.  Electrically widely tunable interband cascade lasers , 2014 .

[6]  Z. Zalevsky,et al.  Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices , 2014, IEEE Transactions on Device and Materials Reliability.

[7]  S. G. Razavipour,et al.  A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme , 2014 .

[8]  Dayan Ban,et al.  Direct charge measurements to read back stored data in nonvolatile memory devices using scanning capacitance microscopy , 2013 .

[9]  D. Ban,et al.  Two‐dimensional profiling of carriers in terahertz quantum cascade lasers using calibrated scanning spreading resistance microscopy and scanning capacitance microscopy , 2013, Journal of microscopy.

[10]  D. Ban,et al.  Impacts of side strips and ridge width on terahertz quantum cascade lasers with metal-metal waveguides , 2013, CLEO: 2013.

[11]  Qing Hu,et al.  An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K , 2013 .

[12]  Qing Hu,et al.  Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers , 2013 .

[13]  Igor Vurgaftman,et al.  High-power room-temperature continuous-wave mid-infrared interband cascade lasers. , 2012, Optics express.

[14]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[15]  Igor Vurgaftman,et al.  Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm. , 2012, Optics express.

[16]  Z. R. Wasilewski,et al.  A phonon scattering assisted injection and extraction based terahertz quantum cascade laser , 2012, 1201.4189.

[17]  I. Vurgaftman,et al.  Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. , 2011, Nature communications.

[18]  S. G. Razavipour,et al.  On metal contacts of terahertz quantum cascade lasers with a metal–metal waveguide , 2011 .

[19]  Rudolf Hey,et al.  Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics , 2011 .

[20]  Chul Soo Kim,et al.  Mid-IR Type-II Interband Cascade Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  M. Beck,et al.  Terahertz quantum cascade lasers , 2010, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  S Safavi-Naeini,et al.  Electrically switching transverse modes in high power THz quantum cascade lasers. , 2010, Optics express.

[23]  D. Ban,et al.  Time-Resolved Thermal Quenching of THz Quantum Cascade Lasers , 2010, IEEE Journal of Quantum Electronics.

[24]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[25]  Dayan Ban,et al.  Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers , 2008, IEEE Journal of Quantum Electronics.

[26]  William W. Bewley,et al.  Interband cascade laser emitting at λ=3.75μm in continuous wave above room temperature , 2008 .

[27]  William W. Bewley,et al.  Gain, loss, and internal efficiency in interband cascade lasers emitting at λ=3.6–4.1μm , 2008 .

[28]  Rui Q. Yang,et al.  Optical gain, loss, and transparency current in high performance mid-infrared interband cascade lasers , 2007 .

[29]  B. DeSalvo,et al.  Single-electron phenomena in ultra-scaled floating-gate devices and their impact on electrical characteristics , 2005 .

[30]  B. Williams,et al.  Effect of doping concentration on the performance of terahertz quantum-cascade lasers , 2005 .

[31]  Romain Desplats,et al.  Oxide charge measurements in EEPROM devices , 2005, Microelectron. Reliab..

[32]  K. Hinzer,et al.  Electrical Scanning Probe Microscopy: Investigating the Inner Workings of Electronic and Optoelectronic Devices , 2005 .

[33]  D. Ban,et al.  Scanning voltage microscopy on active semiconductor lasers: the impact of doping profile near an epitaxial growth interface on series resistance , 2004, IEEE Journal of Quantum Electronics.

[34]  D. Ban,et al.  Scanning voltage microscopy on buried heterostructure multiquantum-well lasers: identification of a diode current leakage path , 2004, IEEE Journal of Quantum Electronics.

[35]  Edward H. Sargent,et al.  Direct observation of lateral current spreading in ridge waveguide lasers using scanning voltage microscopy , 2003 .

[36]  Edward H. Sargent,et al.  Direct imaging of the depletion region of an InP p-n junction under bias using scanning voltage microscopy , 2002 .

[37]  Edward H. Sargent,et al.  Two-dimensional profiling of carriers in a buried heterostructure multi-quantum-well laser: Calibrated scanning spreading resistance microscopy and scanning capacitance microscopy , 2002 .

[38]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[39]  K. Kavanagh,et al.  Calibrated scanning spreading resistance microscopy profiling of carriers in III–V structures , 2001 .

[40]  St. J. Dixon-Warren,et al.  Scanning spreading resistance microscopy study of a metalorganic chemical vapor deposited grown InP optoelectronic structure , 2001 .

[41]  J. Kang,et al.  Nondestructive one-dimensional scanning capacitance microscope dopant profile determination method and its application to three-dimensional dopant profiles , 2000 .

[42]  Wilfried Vandervorst,et al.  Comparison of two-dimensional carrier profiles in metal–oxide– semiconductor field-effect transistor structures obtained with scanning spreading resistance microscopy and inverse modeling , 2000 .

[43]  J. Marchiando,et al.  Carrier concentration dependence of the scanning capacitance microscopy signal in the vicinity of p–n junctions , 2000 .

[44]  Trudo Clarysse,et al.  Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy , 2000 .

[45]  Wilfried Vandervorst,et al.  Two-dimensional carrier profiling of InP-based structures using scanning spreading resistance microscopy , 1999 .

[46]  Takuma Yamamoto,et al.  Cross-section analysis of electric devices by scanning capacitance microscope , 1999 .

[47]  Clayton C. Williams,et al.  SCANNING CAPACITANCE MICROSCOPE METHODOLOGY FOR QUANTITATIVE ANALYSIS OF P-N JUNCTIONS , 1999 .

[48]  H. Yonezu,et al.  Reduction of surface roughness of an AlAs/GaAs distributed Bragg reflector grown on Si with strained short-period superlattices , 1999 .

[49]  M. Caymax,et al.  Contrast reversal in scanning capacitance microscopy imaging , 1998 .

[50]  M. Hammar,et al.  Topography dependent doping distribution in selectively regrown InP studied by scanning capacitance microscopy , 1998 .

[51]  Joseph J. Kopanski,et al.  Scanning capacitance microscopy measurement of two-dimensional dopant profiles across junctions , 1998 .

[52]  Trudo Clarysse,et al.  Quantification of nanospreading resistance profiling data , 1998 .

[53]  W. Vandervorst,et al.  Nanopotentiometry: Local potential measurements in complementary metal–oxide–semiconductor transistors using atomic force microscopy , 1998 .

[54]  Vladimir A. Ukraintsev,et al.  Scanning capacitance spectroscopy: An analytical technique for pn-junction delineation in Si devices , 1998 .

[55]  C. Berseth,et al.  InAsP/InGaAsP periodic gain structure for 1.5 μm vertical cavity surface emitting laser applications , 1998 .

[56]  Jeremiah R. Lowney,et al.  Scanning capacitance microscopy measurements and modeling: Progress towards dopant profiling of silicon , 1995 .

[57]  W. Vandervorst,et al.  Characterization of a point‐contact on silicon using force microscopy‐supported resistance measurements , 1995 .

[58]  K. Ploog,et al.  Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems. , 1991, Physical review letters.

[59]  Schneider,et al.  Optical studies of electric field domains in GaAs-AlxGa1-xAs superlattices. , 1990, Physical review. B, Condensed matter.

[60]  Harald Schneider,et al.  Optical detection of high‐field domains in GaAs/AlAs superlattices , 1989 .

[61]  D. Renner,et al.  Long-wavelength semiconductor lasers , 1987, IEEE Journal of Quantum Electronics.

[62]  Choi,et al.  Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain. , 1987, Physical review. B, Condensed matter.

[63]  S. Preston On the Physical Aspects of the Vortex-Atom Theory , 1880, Nature.

[64]  W. Vandervorst,et al.  One‐ and two‐dimensional carrier profiling in semiconductors by nanospreading resistance profiling , 1996 .

[65]  Rui Q. Yang Infrared laser based on intersubband transitions in quantum wells , 1995 .

[66]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.