The Size Evolution of Star-forming Galaxies since z ∼ 7 Using ZFOURGE

For the first time, we present the size evolution of a mass-complete (log(M_*/M_⊙) > 10) sample of star-forming galaxies over redshifts z = 1 – 7, selected from the FourStar Galaxy Evolution Survey. Observed H-band sizes are measured from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) Hubble Space Telescope (HST)/F160W imaging. Distributions of individual galaxy masses and sizes illustrate that a clear mass−size relation exists up to z ∼ 7. At z ∼ 7, we find that the average galaxy size from the mass−size relation is more compact at a fixed mass of log(M_*/M_⊙) = 10.1, with r_(1/2,=,aj) = 1.02 ± 0.29 kpc, than at lower redshifts. This is consistent with our results from stacking the same CANDELS HST/F160W imaging, when we correct for galaxy position angle alignment. We find that the size evolution of star-forming galaxies is well fit by a power law of the form r_e = 7.07(1 + z)^(-0.89) kpc, which is consistent with previous works for normal star-formers at 1 4 (r_e ∝ (1 + z)^(-1.2±0.06)). Therefore, we conclude the LBGs likely represent a subset of highly star-forming galaxies that exhibit rapid size growth at z > 4.

[1]  R. Bouwens,et al.  THE EVOLUTION OF MASS–SIZE RELATION FOR LYMAN BREAK GALAXIES FROM z = 1 to z = 7 , 2012, 1207.6634.

[2]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[3]  M. Franx,et al.  STRUCTURE AND MORPHOLOGIES OF z ∼ 7–8 GALAXIES FROM ULTRA-DEEP WFC3/IR IMAGING OF THE HUBBLE ULTRA-DEEP FIELD , 2009, 0909.5183.

[4]  S. E. Persson,et al.  A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.

[5]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[6]  S. E. Persson,et al.  THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT z ∼ 4 WITH ZFOURGE AND CANDELS , 2015, 1506.01380.

[7]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[8]  R. Bouwens,et al.  THE SIZES OF CANDIDATE GALAXIES z∼ 9−10: CONFIRMATION OF THE BRIGHT CANDELS SAMPLE AND RELATION WITH LUMINOSITY AND MASS , 2014, 1406.1180.

[9]  Marcia J. Rieke,et al.  Galaxies at z ~ 7-8: z850-Dropouts in the Hubble Ultra Deep Field , 2004 .

[10]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[11]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[12]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[13]  S. E. Persson,et al.  THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5 , 2016, 1608.07579.

[14]  L. Kewley,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure , 2001, astro-ph/0110452.

[15]  J. Silk The formation of galaxy discs , 2000, astro-ph/0010624.

[16]  Paul W. Angel,et al.  Dark-ages reionization and galaxy-formation simulation – VII. The sizes of high-redshift galaxies , 2016, 1608.00819.

[17]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[18]  Michele Cirasuolo,et al.  EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.

[19]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[20]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[21]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[22]  S. E. Persson,et al.  EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.

[23]  R. Ellis,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[24]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[25]  K. Glazebrook,et al.  DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z ∼ 1 , 2016, 1605.05314.

[26]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[27]  S. E. Persson,et al.  DISCOVERY OF LYMAN BREAK GALAXIES AT z ∼ 7 FROM THE zFourGE SURVEY , 2013, 1304.4227.

[28]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[29]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[30]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. II. EVOLUTION OF CLUMPY GALAXIES , 2015, 1511.07054.

[31]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[32]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[33]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[34]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[35]  Stephen A. Smee,et al.  FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .