Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants

[1]  N. Koch,et al.  Electronic band dispersion determination in azimuthally disordered transition-metal dichalcogenide monolayers , 2019, Communications Physics.

[2]  D. Beljonne,et al.  Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules. , 2019, The journal of physical chemistry letters.

[3]  Ming Liu,et al.  Charge Transfer within the F4TCNQ‐MoS2 van der Waals Interface: Toward Electrical Properties Tuning and Gas Sensing Application , 2018, Advanced Functional Materials.

[4]  C. Richter,et al.  Controllable, Wide‐Ranging n‐Doping and p‐Doping of Monolayer Group 6 Transition‐Metal Disulfides and Diselenides , 2018, Advanced materials.

[5]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[6]  S. Barlow,et al.  Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms , 2018 .

[7]  M. Rohlfing,et al.  Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer , 2017, Nature Communications.

[8]  Hong‐Bo Sun,et al.  Engineering two-dimensional electronics by semiconductor defects , 2017 .

[9]  Yongli Gao,et al.  Charge Transfer at the PTCDA/Black Phosphorus Interface , 2017 .

[10]  Zijing Ding,et al.  Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor. , 2017, ACS nano.

[11]  Q. Yao,et al.  Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts , 2017, ACS applied materials & interfaces.

[12]  A. Bostwick,et al.  Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures , 2017, 1705.04866.

[13]  Timothy C. Berkelbach,et al.  Coulomb engineering of the bandgap and excitons in two-dimensional materials , 2017, Nature Communications.

[14]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[15]  Chaozheng He,et al.  The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study , 2016 .

[16]  R. Wallace,et al.  Atomically-thin layered films for device applications based upon 2D TMDC materials , 2016 .

[17]  Signe S. Grønborg,et al.  Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction , 2016, 1601.00095.

[18]  H. Komsa,et al.  Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment , 2015, 1508.06737.

[19]  J. Robertson,et al.  Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts , 2015 .

[20]  N. Koch,et al.  Interface Dipole and Growth Mode of Partially and Fully Fluorinated Rubrene on Au(111) and Ag(111) , 2015 .

[21]  E. Vogel,et al.  Controlled Doping of Large‐Area Trilayer MoS2 with Molecular Reductants and Oxidants , 2015, Advanced materials.

[22]  D. Jena,et al.  Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors , 2015, 1503.03015.

[23]  Y. Chauhan,et al.  Doping Strategies for Monolayer MoS2 via Surface Adsorption: A Systematic Study , 2014 .

[24]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[25]  Norbert Koch,et al.  Organic semiconductor density of states controls the energy level alignment at electrode interfaces , 2014, Nature Communications.

[26]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[27]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[28]  L. Ottaviano,et al.  Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum , 2013 .

[29]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .

[30]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[31]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[32]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[33]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[34]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[35]  S. Sanvito,et al.  Ab-initio study on the possible doping strategies for MoS$_2$ monolayers , 2013, 1304.8056.

[36]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[37]  Z. Y. Zhu,et al.  Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems , 2013 .

[38]  N. Koch,et al.  Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface , 2013 .

[39]  G. Steele,et al.  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[40]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[41]  C. D. Walle,et al.  Effects of strain on band structure and effective masses in MoS$_2$ , 2012 .

[42]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[43]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[44]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[45]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[46]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[47]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[48]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[49]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[50]  William R. Salaneck,et al.  Fermi level pinning at interfaces with tetrafluorotetracyanoquinodimethane (F4-TCNQ): The role of integer charge transfer states , 2007 .

[51]  S. Louie,et al.  Coexistence of sharp quasiparticle dispersions and disorder features in graphite , 2005, cond-mat/0506238.

[52]  B. Sowden,et al.  The electrical conductivity of sapphire irradiated at 550–700°C with an applied electric field of 1 kV/cm , 1995 .

[53]  H. Ade,et al.  Rigid valence band shift due to molecular surface counter-doping of MoS2 , 2019, Surface Science.

[54]  A. Kahn,et al.  Investigation of the High Electron Affinity Molecular Dopant F6‐TCNNQ for Hole‐Transport Materials , 2018 .