A Level Set Method in Shape and Topology Optimization for Variational Inequalities

A Level Set Method in Shape and Topology Optimization for Variational Inequalities The level set method is used for shape optimization of the energy functional for the Signorini problem. The boundary variations technique is used in order to derive the shape gradients of the energy functional. The conical differentiability of solutions with respect to the boundary variations is exploited. The topology modifications during the optimization process are identified by means of an asymptotic analysis. The topological derivatives of the energy shape functional are employed for the topology variations in the form of small holes. The derivation of topological derivatives is performed within the framework proposed in (Sokołowski and Żochowski, 2003). Numerical results confirm that the method is efficient and gives better results compared with the classical shape optimization techniques.

[1]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[2]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[3]  De Leone,et al.  Computational Optimization and Applications Volume 34, Number 2, June 2006 , 2006 .

[4]  Jan Sokolowski,et al.  Topological Derivatives for Contact Problems , 2006 .

[5]  Stanley Osher,et al.  Level Set Methods , 2003 .

[6]  Jan Sokolowski,et al.  The Topological Derivative of the Dirichlet Integral Under Formation of a Thin Ligament , 2004 .

[7]  Jan Sokoƒowski,et al.  TOPOLOGICAL DERIVATIVES OF SHAPE FUNCTIONALS FOR ELASTICITY SYSTEMS* , 2001 .

[8]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[9]  Antoine Henrot,et al.  On Numerical Solution of Shape Inverse Problems , 2002, Comput. Optim. Appl..

[10]  Jan Sokolowski,et al.  Modelling of topological derivatives for contact problems , 2005, Numerische Mathematik.

[11]  Jan Sokolowski,et al.  Conical differentiability for evolution variational inequalities , 2003 .

[12]  Jan Sokolowski,et al.  Tangent Sets In Banach Spaces And Applications To Variational Inequalities , 2000 .

[13]  Jan Sokolowski,et al.  Selfadjoint Extensions for the Elasticity System in Shape Optimization , 2004 .

[14]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[15]  Jan Sokolowski,et al.  Self adjoint extensions of differential operators in application to shape optimization , 2003 .

[16]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[17]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[18]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[19]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[20]  Lidia Jackowska-Strumiłło,et al.  Topological optimization and inverse problems , 2003 .

[21]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[22]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[23]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[24]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[25]  G. Allaire,et al.  Structural optimization using topological and shape sensitivity via a level set method , 2005 .

[26]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[27]  Alper Yilmaz,et al.  Level Set Methods , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[28]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[29]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[30]  Bhimsen K. Shivamoggi,et al.  The Method of Matched Asymptotic Expansions , 2003 .

[31]  Jan Sokolowski,et al.  Optimality Conditions for Simultaneous Topology and Shape Optimization , 2003, SIAM J. Control. Optim..