Smooth gait optimization of a fish robot using the genetic-hill climbing algorithm

This paper presents a model of a three-joint (four links) carangiform fish robot. The smooth gait or smooth motion of a fish robot is optimized by using a combination of the Genetic Algorithm (GA) and the Hill Climbing Algorithm (HCA) with respect to its dynamic system. Genetic algorithm is used to create an initial set of optimal parameters for the two input torque functions of the system. This set is then optimized by using HCA to ensure that the final set of optimal parameters is a "near" global optimization result. Finally, the simulation results are presented in order to demonstrate that the proposed method is effective.

[1]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[2]  M. Lighthill Hydromechanics of Aquatic Animal Propulsion , 1969 .

[3]  Ian Gilhespy,et al.  DIVEBOT: A diving robot with a whale-like buoyancy mechanism , 2003, Robotica.

[4]  Richard M. Murray,et al.  EXPLORING OPTIMAL GAITS FOR PLANAR CARANGIFORM ROBOT FISH LOCOMOTION , 2005 .

[5]  Orest Iftime,et al.  Proceedings of the 16th IFAC World congress , 2006 .

[6]  Masafumi Hagiwara,et al.  Pseudo-hill climbing genetic algorithm (PHGA) for function optimization , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[7]  Chunlin Zhou,et al.  Gait Planning for Steady Swimming Control of Biomimetic Fish Robots , 2009, Adv. Robotics.

[8]  Long Wang,et al.  Development of Multi-mode Biomimetic Robotic Fish Based on Central Pattern Generator , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Joel W. Burdick,et al.  Experiments in carangiform robotic fish locomotion , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Huosheng Hu,et al.  DEVELOPMENT OF FISH-LIKE SWIMMING BEHAVIOURS FOR AN AUTONOMOUS ROBOTIC FISH , 2004 .

[11]  Long Wang,et al.  Parameter Optimization of Simplified Propulsive Model for Biomimetic Robot Fish , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[13]  I. Borazjani,et al.  Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes , 2008, Journal of Experimental Biology.

[14]  G.V. Lauder,et al.  Morphology and experimental hydrodynamics of fish fin control surfaces , 2004, IEEE Journal of Oceanic Engineering.

[15]  M. Lighthill Note on the swimming of slender fish , 1960, Journal of Fluid Mechanics.

[16]  Huosheng Hu,et al.  Building a Simulation Environment for Optimising Control Parameters of an Autonomous Robotic Fish , 2003 .

[17]  Dewen Hu,et al.  A bionic neural network for fish-robot locomotion , 2006 .

[18]  Chien Chern Cheah,et al.  Adaptive control schemes for autonomous underwater vehicle , 2009, Robotica.

[19]  Christine M. Anderson-Cook Practical Genetic Algorithms (2nd ed.): Randy L. Haupt and Sue Ellen Haupt , 2005 .

[20]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[21]  Junzhi Yu,et al.  A simplified propulsive model of bio-mimetic robot fish and its realization , 2005, Robotica.

[22]  Jenhwa Guo,et al.  A waypoint-tracking controller for a biomimetic autonomous underwater vehicle , 2006 .

[23]  Motomu Nakashima,et al.  A Study on the Propulsive Mechanism of a Double Jointed Fish Robot Utilizing Self-Excitation Control , 2003 .