Electron density analysis of aromatic complexes in excited electronic states: The benzene and naphthalene excimers

Abstract This paper presents an energetic and electron density analysis of intermolecular complexes in excited states. The electron distributions of the benzene and the naphthalene dimers, ( C 6 H 6 ) 2 and ( C 10 H 8 ) 2 , are studied at selected intermolecular configurations in the ground and first singlet excited states. The electrostatic contribution to the interaction energy of the benzene and the naphthalene excimers is analyzed in terms of changes on the electron density accompanying the transitions related to their electronic spectra. Some descriptors from the quantum theory of atoms in molecules and the NCI index are analyzed for these complexes in both states. These properties reveal that whereas the first order density does not explain the larger stability of the excimers compared to the ground state complexes, the intermolecular electron delocalization, a second order property, shows definite trends. The increase of intermolecular electron sharing can thus be considered a measure of the delocalization of the excitation energy in the electronic transitions.

[1]  Samantha Jenkins,et al.  Exploring hydrogen bond in the excited state leading toward intramolecular proton transfer: detailed analysis of the structure and charge density topology along the reaction path using QTAIM , 2012, Journal of Molecular Modeling.

[2]  Leticia González,et al.  Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules. , 2014, Physical chemistry chemical physics : PCCP.

[3]  Chérif F. Matta,et al.  The Quantum theory of atoms in molecules : from solid state to DNA and drug design , 2007 .

[4]  C. Crespo-Hernández,et al.  Ultrafast excited-state dynamics in nucleic acids. , 2004, Chemical reviews.

[5]  R. Bader,et al.  Properties of atoms in molecules: Transition probabilities , 2000 .

[6]  S. Rice,et al.  Theoretical Studies of Transannular Interactions. I. Benzene Excimer Fluorescence and the Singlet States of the Paracyclophanes , 1966 .

[7]  E. A. Walters,et al.  Dissociation energies of the benzene dimer and dimer cation , 1987 .

[8]  J. Eisinoer THE EXCITED STATES OF NUCLEIC ACIDS , 1968 .

[9]  J. Mccullough,et al.  Photoadditions of aromatic compounds , 1987 .

[10]  Klaus Müllen,et al.  Pyrene-based materials for organic electronics. , 2011, Chemical reviews.

[11]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[12]  Kwang Soo Kim,et al.  Aromatic Excimers: Ab Initio and TD-DFT Study. , 2013, Journal of chemical theory and computation.

[13]  Jay C Amicangelo Theoretical study of the benzene excimer using time-dependent density functional theory. , 2005, The journal of physical chemistry. A.

[14]  R. Bader,et al.  Properties of atoms in molecules: electrophilic aromatic substitution , 1989 .

[15]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[16]  S. Grimme,et al.  Time-dependent density functional study of excimers and exciplexes of organic molecules , 2008 .

[17]  G. DiLabio,et al.  Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies. , 2011, The Journal of chemical physics.

[18]  Andrew Streitwieser,et al.  Electron Delocalization and the Fermi Hole , 1996 .

[19]  E. Francisco,et al.  Interacting Quantum Atoms:  A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. , 2005, Journal of chemical theory and computation.

[20]  Jesús Hernández-Trujillo,et al.  Bonding in Polycyclic Aromatic Hydrocarbons in Terms of the Electron Density and of Electron Delocalization , 2003 .

[21]  Yi-Gui Wang,et al.  A practical and efficient method to calculate AIM localization and delocalization indices at post‐HF levels of theory , 2003, J. Comput. Chem..

[22]  S. Shirai,et al.  Ab initio studies of aromatic excimers using multiconfiguration quasi-degenerate perturbation theory. , 2011, The journal of physical chemistry. A.

[23]  R. Zahradník,et al.  The World of Non-Covalent Interactions: 2006 , 2006 .

[24]  A. Kerridge Oxidation state and covalency in f-element metallocenes (M = Ce, Th, Pu): a combined CASSCF and topological study. , 2013, Dalton transactions.

[25]  S. McGlynn,et al.  Energy of Excimer Luminescence. I. A Reconsideration of Excimer Processes , 1964 .

[26]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[27]  Jae Shin Lee,et al.  Accurate ab initio binding energies of the benzene dimer. , 2006, The journal of physical chemistry. A.

[28]  Kazumasa Honda,et al.  High-level ab initio computations of structures and interaction energies of naphthalene dimers: origin of attraction and its directionality. , 2004, The Journal of chemical physics.

[29]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[30]  J. Hernández‐Trujillo,et al.  Quantum molecular dynamics of the topological properties of the electron density: charge transfer in H3(+) and LiF. , 2011, The journal of physical chemistry. A.

[31]  J. Birks,et al.  ‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[33]  Krzysztof Szalewicz,et al.  Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .

[34]  O. Christiansen,et al.  Linear response coupled cluster study of the benzene excimer , 2009 .

[35]  Björn O. Roos,et al.  Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited , 1995 .

[36]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[37]  R. Podeszwa,et al.  Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. , 2008, Physical chemistry chemical physics : PCCP.

[38]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[39]  J. Hernández‐Trujillo,et al.  Molecular Quadrupole Moments for the Series of Fluoro- and Chlorobenzenes , 1996 .

[40]  J. Hernández‐Trujillo,et al.  Hydrogen-bond cooperative effects in small cyclic water clusters as revealed by the interacting quantum atoms approach. , 2013, Chemistry.

[41]  A. Davydov THE THEORY OF MOLECULAR EXCITONS , 1964 .

[42]  B. Wardle Principles and Applications of Photochemistry , 2010 .

[43]  J. J. Serrano-Pérez,et al.  The role of pyrimidine nucleobase excimers in DNA photophysics and photoreactivity , 2009 .

[44]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[45]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[46]  F. Hirayama,et al.  Excimer Fluorescence of Benzene and Its Alkyl Derivatives—Concentration and Temperature Dependence , 1969 .

[47]  B. Roos,et al.  A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2) , 2004 .

[48]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[49]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[50]  T. Sakhno,et al.  Excimers of organic molecules , 1993 .

[51]  A. Hiraya,et al.  Direct absorption spectra of jet-cooled benzene in 130-260 nm , 1991 .

[52]  B. Roos,et al.  A theoretical study of singlet low-energy excited states of the benzene dimer , 2006 .

[53]  A. G. Tolstikov,et al.  Glycals in enantiospecific synthesis , 1993 .

[54]  S. McGlynn,et al.  SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS: DIMERS OF BENZENE. , 1968 .

[55]  Chaoyang Zhang,et al.  Shape and size effects in π–π interactions: Face‐to‐face dimers , 2011, J. Comput. Chem..

[56]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[57]  Peter Pulay,et al.  High accuracy benchmark calculations on the benzene dimer potential energy surface , 2007 .