Application of detector precision characteristics and histogram packing for compression of biological fluorescence micrographs

Modern applications of biological microscopy such as high-content screening (HCS), 4D imaging, and multispectral imaging may involve collection of thousands of images in every experiment making efficient image-compression techniques necessary. Reversible compression algorithms, when used with biological micrographs, provide only a moderate compression ratio, while irreversible techniques obtain better ratios at the cost of removing some information from images and introducing artifacts. We construct a model of noise, which is a function of signal in the imaging system. In the next step insignificant intensity levels are discarded using intensity binning. The resultant images, characterized by sparse intensity histograms, are coded reversibly. We evaluate compression efficiency of combined reversible coding and intensity depth-reduction using single-channel 12-bit light micrographs of several subcellular structures. We apply local and global measures of intensity distribution to estimate maximum distortions introduced by the proposed algorithm. We demonstrate that the algorithm provides efficient compression and does not introduce significant changes to biological micrographs. The algorithm preserves information content of these images and therefore offers better fidelity than standard irreversible compression method JPEG2000.

[1]  M. Chadalapaka Network Working Group , 2002 .

[2]  S. Golomb Run-length encodings. , 1966 .

[3]  Solomon W. Golomb,et al.  Run-length encodings (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[4]  Juan Paz,et al.  Diagnostic quality of high resolution JPEG 2000 compressed CT and MR brain images , 2009 .

[5]  J. Paul Robinson,et al.  Compression of fluorescence microscopy images based on the signal‐to‐noise estimation , 2006, Microscopy research and technique.

[6]  P. Metzger,et al.  Network Working Group , 2000 .

[7]  J. Paul Robinson,et al.  Precision of light intensity measurement in biological optical microscopy , 2007, Journal of microscopy.

[8]  Pamela C. Cosman,et al.  Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy , 1994, Proc. IEEE.

[9]  Roman Starosolski Compressing images of sparse histograms , 2005, SPIE Optics + Optoelectronics.

[10]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[11]  M. Grgic,et al.  Comparative study of JPEG and JPEG2000 image coders , 2003, 17th International Conference on Applied Electromagnetics and Communications, 2003. ICECom 2003..

[12]  Tytus Bernas Basics of Digital Microscopy , 2005, Current protocols in cytometry.

[13]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[14]  Armando J. Pinho On the impact of histogram sparseness on some lossless image compression techniques , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  Hilde Bosmans,et al.  Evaluation of clinical image processing algorithms used in digital mammography. , 2009, Medical physics.

[16]  Ian H. Witten,et al.  Arithmetic coding revisited , 1998, TOIS.

[17]  Touradj Ebrahimi,et al.  Christopoulos: Thc Jpeg2000 Still Image Coding System: an Overview the Jpeg2000 Still Image Coding System: an Overview , 2022 .

[18]  Guillermo Sapiro,et al.  LOCO-I: a low complexity, context-based, lossless image compression algorithm , 1996, Proceedings of Data Compression Conference - DCC '96.

[19]  Peter Deutsch,et al.  DEFLATE Compressed Data Format Specification version 1.3 , 1996, RFC.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Amar Mitiche,et al.  Reliable and fast structure-oriented video noise estimation , 2002, Proceedings. International Conference on Image Processing.

[22]  Michael G. Strintzis,et al.  A review of compression methods for medical images in PACS , 1998, Int. J. Medical Informatics.

[23]  Robert F. Rice,et al.  Some practical universal noiseless coding techniques , 1979 .

[24]  Brendt Wohlberg,et al.  A review of the fractal image coding literature , 1999, IEEE Trans. Image Process..

[25]  H. K. Huang,et al.  Telemedicine and Teleradiology , 2010 .

[26]  Oleg S. Pianykh,et al.  Digital Imaging and Communications in Medicine (DICOM) , 2017, Radiopaedia.org.

[27]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[28]  Chaur-Chin Chen On the selection of image compression algorithms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[29]  Michal Strzelecki,et al.  Texture Analysis Methods - A Review , 1998 .

[30]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[31]  Stefan Winkler,et al.  JPEG vs. JPEG 2000: an objective comparison of image encoding quality , 2004, SPIE Optics + Photonics.

[32]  R. F. Rice,et al.  Some practical universal noiseless coding techniques, part 2 , 1983 .