Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models

Geodynamical numerical modeling has been combined with crustal structural restoration of the central Pyrenees in order to gain insight into fundamental processes that control the evolution of collisional orogens. Models are based on deformation of the crust by stresses transmitted upward from kinematic basal boundary conditions corresponding to the subduction of part of the lithosphere. The influence of inherited crustal heterogeneities, denudation, subcrustal loads, and crustal mechanical properties, consistent with well-constrained crustal partial restored cross sections of the central Pyrenees, is investigated by progressively incorporating them into model experiments. The primary result inferred from the modeling is that the asymmetry of the central Pyrenees double-wedge, seen as strain partitioning and in the morphological evolution, is a consequence of the asymmetric distribution of inherited crustal heterogeneity. The tectonic style of the central Pyrenees is the result of the inversion of the Early Cretaceous extensional fault system, during the early stages of the collision, and the reactivation of Hercynian heterogeneities during the late stages. Most of the upper crustal mass that entered the orogen during the calculated 165 km of convergence was accommodated by an increase of upper crustal cross sectional area or lost by denudation. To explain the upper crustal mass partitioning, as well as the geometry of the foreland basins and the preservation of synorogenic deposits in piggyback basins, a subduction load has to be applied to the models. Lower crust and mantle lithosphere were consumed by the mantle.

[1]  D. Burbank,et al.  Tectonic and climatic controls on the development of foreland fan deltas: Montserrat and Sant Llorenç del Munt systems (Middle Eocene, Ebro Basin, NE Spain) , 2000 .

[2]  J. Muñoz,et al.  Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen , 1999 .

[3]  Jaume Vergés i Masip Estudi geològic del vessant sud del Pirineu oriental i central: evolució cinemàtica en 3D , 1999 .

[4]  C. Beaumont,et al.  Continental collision including a weak zone: the vise model and its application to the Newfoundland Appalachians , 1998 .

[5]  A. Teixell Crustal structure and orogenic material budget in the west central Pyrenees , 1998 .

[6]  J. Braun,et al.  On the thermomechanical evolution of compressional orogens , 1997 .

[7]  Juanjo Fernández Aplicación del método magnetotelúrico al estudio de la estructura litosférica de los Pirineos , 1996 .

[8]  A. Teixell The Ansó transect of the southern Pyrenees: basement and cover thrust geometries , 1996, Journal of the Geological Society.

[9]  C. Beaumont,et al.  The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations , 1996 .

[10]  K. McClay,et al.  Syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold–thrust belt , 1996, Journal of the Geological Society.

[11]  D. Harry,et al.  The growth of orogenic belts and the role of crustal heterogeneities in decollement tectonics , 1995 .

[12]  M. Granet,et al.  A tomographic study of the lithosphere beneath the Pyrenees from local and teleseismic data , 1995 .

[13]  C. Beaumont,et al.  Three‐dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand , 1995 .

[14]  J. Muñoz,et al.  Partial melting of subducted continental lower crust in the Pyrenees , 1995, Journal of the Geological Society.

[15]  P. Fullsack An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models , 1995 .

[16]  C. Beaumont,et al.  Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens , 1995 .

[17]  H. Millán,et al.  Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections , 1995 .

[18]  H. Millán,et al.  Palaeo-elevation and effective elastic thickness evolution at mountain ranges: inferences from flexural modelling in the Eastern Pyrenees and Ebro Basin , 1995 .

[19]  C. Beaumont,et al.  Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere , 1994 .

[20]  C. Beaumont,et al.  A geodynamic framework for interpreting crustal-scale seismic-reflectivity patterns in compressional orogens , 1994 .

[21]  J. Muñoz,et al.  Role of extension and compression in the evolution of the eastem margin of Iberia: the ESCI- València Trough seismic profile , 1994 .

[22]  Ecors Team,et al.  The Arzacq-Western Pyrenees ECORS Deep Seismic Profile , 1994 .

[23]  Sean D. Willett,et al.  Mechanical model for the tectonics of doubly vergent compressional orogens , 1993 .

[24]  J. Déramond,et al.  Relationships between thrust tectonics and sequence stratigraphy surfaces in foredeeps: model and examples from the Pyrenees (Cretaceous-Eocene, France, Spain) , 1993, Geological Society, London, Special Publications.

[25]  J. Muñoz,et al.  The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain , 1992 .

[26]  K. McClay,et al.  Physical models of thrust wedges , 1992 .

[27]  J. Muñoz Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section , 1992 .

[28]  P. Santanach,et al.  Contrasting rotations within thrust sheets and kinematics of thrust tectonics as derived from palaeomagnetic data: an example from the Southern Pyrenees , 1992 .

[29]  J. Muñoz,et al.  Thrusting and foreland basin evolution in the Southern Pyrenees , 1992 .

[30]  S. P. Srivastava,et al.  Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present , 1991 .

[31]  J. Chéry,et al.  Thermomechanical evolution of a thinned continental lithosphere under compression: Implications for the Pyrenees , 1991 .

[32]  Peter O. Koons,et al.  Two-sided orogen: Collision and erosion from the sandbox to the Southern Alps, New Zealand , 1990 .

[33]  E. Debroas Le flysch noir albo-cenomanien temoin de la structuration albienne a senonienne de la Zone nord-pyreneenne en Bigorre (Hautes-Pyrenees, France) , 1990 .

[34]  J. Chéry,et al.  How to build an asymmetric crustal root such as the Pyrenean one; a thermomechanical model , 1990 .

[35]  B. Pinet,et al.  Major Hercynian thrusts along the ECORS Pyrenees and Biscay lines , 1990 .

[36]  M. Mattauer Une autre interpretation du profil ECORS Pyrenees , 1990 .

[37]  J. Muñoz,et al.  Thrust sequence in the southern central Pyrenees , 1990 .

[38]  A. Yelland Fission track thermotectonics in the Pyrenean orogen , 1990 .

[39]  A. Hirn,et al.  Geophysical constraints on the deep structure along the Ecors Pyrenees Line , 1989 .

[40]  A. Casas,et al.  Gravity constraints on the deep structure of the Pyrenean belt along the ECORS profile , 1989 .

[41]  P. Choukroune The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt , 1989 .

[42]  J. Muñoz,et al.  Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees , 1989 .

[43]  J. Casas,et al.  Essai de restitution de la déformation dans une zone avec plis et chevauchements: le «synclincal de Llavorsí» dans les Pyrénées centrales (Espagne) , 1989 .

[44]  B. Pinet,et al.  Deep structure of the Aquitaine shelf: constraints from expanding spread profiles on the ECORS Bay of Biscay transect , 1988 .

[45]  J. Golberg,et al.  Données nouvelles et mise au point sur l'âge du métamorphisme pyrénéen , 1988 .

[46]  G. Crouzet,et al.  Rôle des paléostructures Albo-Cénomaniennes dans la géométrie des chevauchements frontaux nord-Pyrénéens , 1988 .

[47]  B. Pinet,et al.  Deep seismic reflection and refraction profiling along the Aquitaine shelf (Bay of Biscay) , 1987 .

[48]  X. Pichon,et al.  Passive margin formation by low-angle faulting within the upper crust: The Northern Bay of Biscay Margin , 1987 .

[49]  M. Daignières,et al.  Crustal scale balanced cross-sections of the Pyrenees; discussion , 1986 .

[50]  P. Souquet,et al.  Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees , 1986 .

[51]  J. Muñoz,et al.  Thrust sequences in the eastern Spanish Pyrenees , 1986 .

[52]  J. Muñoz,et al.  Thrust belt development in the eastern pyrenees and related depositional sequences in the southern foreland basin , 1986 .

[53]  F. A. Dahlen,et al.  Noncohesive critical Coulomb wedges: An exact solution , 1984 .

[54]  O. Jaoul,et al.  The effect of varying water contents on the creep behavior of Heavitree quartzite , 1984 .

[55]  Jacques Malavieille Modelisation experimentale des chevauchements imbriques; application aux chaines de montagnes , 1984 .

[56]  D. Vielzeuf,et al.  Crustal splitting and the emplacement of Pyrenean lherzolites and granulites , 1984 .

[57]  P. England,et al.  A thin viscous sheet model for continental deformation , 1982 .

[58]  A. Mauffret,et al.  Western extension of the Iberian-European plate boundary during the Early Cenozoic (Pyrenean) convergence: A new model☆ , 1982 .