The Earliest Subcontinental Lithospheric Mantle

[1]  S. Kohn,et al.  Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions , 2014, Contributions to Mineralogy and Petrology.

[2]  W. Griffin,et al.  The world turns over: Hadean-Archean crust-mantle evolution , 2014 .

[3]  W. Griffin,et al.  Deep earth recycling in the Hadean and constraints on surface tectonics , 2013, American Journal of Science.

[4]  W. Griffin,et al.  3‐D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables , 2013 .

[5]  W. Griffin,et al.  The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence , 2013 .

[6]  J. Afonso,et al.  3‐D multi‐observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis , 2013 .

[7]  W. Griffin,et al.  Phanerozoic Evolution of the Lithosphere Beneath the Sino‐Korean Craton , 2013 .

[8]  W. Griffin,et al.  Secular Variation in the Composition of Subcontinental Lithospheric Mantle: Geophysical and Geodynamic Implications , 2013 .

[9]  W. Griffin,et al.  U–Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block , 2012 .

[10]  W. Griffin,et al.  Accretion and reworking beneath the North China Craton , 2012 .

[11]  W. Griffin,et al.  Coupling, decoupling and metasomatism: Evolution of crust–mantle relationships beneath NW Spitsbergen , 2012 .

[12]  B. Schoene,et al.  Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago , 2012, Nature.

[13]  Harold F. Levison,et al.  An Archaean heavy bombardment from a destabilized extension of the asteroid belt , 2012, Nature.

[14]  Peter A. Cawood,et al.  A Change in the Geodynamics of Continental Growth 3 Billion Years Ago , 2012, Science.

[15]  A. Steele,et al.  Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions , 2011, Science.

[16]  W. Griffin,et al.  Archean lithospheric mantle beneath Arkansas : continental growth by microcontinent accretion , 2011 .

[17]  M. V. Van Kranendonk Two types of Archean continental crust: Plume and plate tectonics on early Earth , 2010, American Journal of Science.

[18]  W. Griffin,et al.  Early crustal evolution in the western Yangtze Block: Evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks , 2010 .

[19]  W. Griffin,et al.  Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde Archipelago) , 2010 .

[20]  W. Griffin,et al.  On the Vp/Vs-Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle , 2010 .

[21]  W. Griffin,et al.  Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil , 2009 .

[22]  W. Griffin,et al.  Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? , 2009 .

[23]  I. Campbell,et al.  Progressive mixing of meteoritic veneer into the early Earth’s deep mantle , 2009, Nature.

[24]  W. Griffin,et al.  Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton , 2009 .

[25]  W. Griffin,et al.  Sulfide and whole rock Re-Os systematics of eclogite and pyroxenite xenoliths from the Slave Craton, Canada , 2009 .

[26]  W. Griffin,et al.  Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite , 2009 .

[27]  W. Griffin,et al.  The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution , 2009 .

[28]  A. Vauchez,et al.  Feedback between melt percolation and deformation in an exhumed lithosphere asthenosphere boundary , 2008 .

[29]  W. Griffin,et al.  Continental collision and accretion recorded in the deep lithosphere of central China , 2008 .

[30]  W. Griffin,et al.  Integrated geophysical‐petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications , 2008 .

[31]  W. Griffin,et al.  Re–Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle , 2008 .

[32]  W. Griffin,et al.  Dynamics of cratons in an evolving mantle , 2008 .

[33]  Albrecht W. Hofmann,et al.  Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean , 2008, Nature.

[34]  W. Griffin,et al.  Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis , 2007 .

[35]  R. Carlson,et al.  Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle , 2007 .

[36]  S. Jaireth,et al.  Nickel sulfide deposits in Australia: Characteristics, resources, and potential , 2006 .

[37]  W. Griffin,et al.  Transformation of Archaean Lithospheric Mantle by Refertilization: Evidence from Exposed Peridotites in the Western Gneiss Region, Norway , 2006 .

[38]  W. Griffin,et al.  Thermal and compositional structure of the subcontinental lithospheric mantle: Derivation from shear wave seismic tomography , 2006 .

[39]  P. Kelemen,et al.  Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland , 2006 .

[40]  W. Griffin,et al.  Widespread Archean basement beneath the Yangtze craton , 2006 .

[41]  W. Griffin,et al.  Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications , 2006 .

[42]  W. Griffin,et al.  The lithospheric mantle beneath the southwestern Tianshan area, northwest China , 2006 .

[43]  M. V. Kranendonk,et al.  It started with a plume - early Archaean basaltic proto-continental crust [rapid communication] , 2005 .

[44]  P. Buseck,et al.  Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton , 2005 .

[45]  W. Griffin,et al.  Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites , 2004 .

[46]  W. Griffin,et al.  Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts , 2004 .

[47]  W. Griffin,et al.  Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway , 2004 .

[48]  S. Lee,et al.  Mantle seismic structure beneath the Kaapvaal and Zimbabwe Cratons , 2004 .

[49]  R. Hilst,et al.  4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography , 2004 .

[50]  W. Griffin,et al.  3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton , 2004 .

[51]  R. Carlson,et al.  The origin of garnet and clinopyroxene in ''depleted'' Kaapvaal peridotites , 2003 .

[52]  W. Griffin,et al.  The evolution of lithospheric mantle beneath the Kalahari Craton and its margins , 2003 .

[53]  D. Pearson,et al.  Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds , 2003 .

[54]  W. Griffin,et al.  The origin and evolution of Archean lithospheric mantle , 2003 .

[55]  W. Griffin,et al.  In situ Re‐Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle , 2002 .

[56]  W. Griffin,et al.  New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides , 2002 .

[57]  W. Griffin,et al.  In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results , 2002 .

[58]  W. Griffin,et al.  Superdeep diamonds from the Juina area, Mato Grosso State, Brazil , 2001, Contributions to Mineralogy and Petrology.

[59]  W. Griffin,et al.  The density structure of subcontinental lithosphere through time , 2001 .

[60]  W. Griffin,et al.  Non-chondritic distribution of the highly siderophile elements in mantle sulphides , 2000, Nature.

[61]  Brueckner,et al.  A general model for the intrusion and evolution of ‘mantle’ garnet peridotites in high‐pressure and ultra‐high‐pressure metamorphic terranes , 2000 .

[62]  W. Griffin,et al.  The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton , 1999 .

[63]  D. Pearson The age of continental roots , 1999 .

[64]  Louis Moresi,et al.  Some thoughts on the stability of cratonic lithosphere: Effects of buoyancy and viscosity , 1999 .

[65]  W. Griffin,et al.  Layered Mantle Lithosphere in the Lac de Gras Area, Slave Craton: Composition, Structure and Origin , 1999 .

[66]  S. Mertzman,et al.  Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths , 1997 .

[67]  W. Griffin,et al.  4-D Lithosphere Mapping: methodology and examples , 1996 .

[68]  G. Davies Punctuated tectonic evolution of the earth , 1995 .

[69]  J. Gurney,et al.  Geotectonic controls of primary diamond deposits" implications for area selection , 1995 .

[70]  A. Janse Is Clifford’s Rule Still Valid? Affirmative Examples from Around the World , 1991 .

[71]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[72]  W. Griffin,et al.  A xenolith-derived geotherm for southeastern australia and its geophysical implications , 1985 .

[73]  W. Griffin,et al.  Caledonian Sm–Nd ages and a crustal origin for Norwegian eclogites , 1980, Nature.

[74]  W. Griffin,et al.  Highly evolved Archean basement beneath the western Cathaysia Block, South China , 2011 .

[75]  W. Griffin,et al.  The Brockman Creek kimberlite, East Pilbara, Australia , 2003 .

[76]  W. Griffin,et al.  Diamonds from the deep: pipe DO-27, Slave Craton, Canada , 2000 .

[77]  H. Brueckner,et al.  A tale of two orogens: the contrating T-P-t history and geochemical evolution of mantle in high- and ultrahigh-pressure metamorphic terranes of the Norwegian Caledonides and the Czech Variscides , 1998 .

[78]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[79]  P. Kelemen,et al.  Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting , 1998 .