Adaptive Particle Swarm Optimization with Dynamic Population and its Application to Constrained Engineering Design Optimization

This paper presents a variant of the particle swarm optimization (PSO) that we call the adaptive particle swarm optimization with dynamic population (DP-APSO), which adopts a novel dynamic population (DP) strategy whereby the population size of swarm can vary with the evolutionary process. The DP strategy enables the population size to increase when the swarm converges and decrease when the swarm disperses. Experiments were conducted on two well-studied constrained engineering design optimization problems. The results demonstrate better performance of the DP-APSO in solving these engineering design optimization problems when compared with two other evolutionary computation algorithms.

[1]  Bo Liu,et al.  An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  Tapabrata Ray,et al.  Society and civilization: An optimization algorithm based on the simulation of social behavior , 2003, IEEE Trans. Evol. Comput..

[5]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[6]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.