UWB Noise-OFDM Netted Radar: Physical Layer Design and Analysis

It is well known that ultra-wideband (UWB) noise radar achieves high-resolution imaging of targets and terrain. The wide bandwidth yields fine range resolution, while the noise waveform provides immunity from detection, interference, and interception. Having multiple noise radars networked with each other provides significant benefits in target detection and recognition. We propose a scheme to modify the UWB noise radar to supplement it with secure multi-user network communication capabilities, thus architecting the UWB noise-orthogonal frequency-division multiplexing (OFDM) netted radar. The salient features of this multi-functional radar system include surveillance with embedded security-enabled OFDM-based communications, multi-user capability, and physical layer security. The system's physical layer design is analyzed for the composite UWB noise-OFDM waveform's dual performance, communications reliability, confidentiality, and message integrity protection. We also present critical issues that underscore the need for a unique medium access control (MAC) algorithm as a duplex multiplexing technique for this ad hoc multi-radar communications network.

[1]  L. Carin,et al.  Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits , 2001 .

[2]  L. Turner,et al.  The evolution of featureless waveforms for LPI communications , 1991, Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991.

[3]  S.D. Blunt,et al.  Diversity Aspects of Radar-Embedded Communications , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[4]  W. Fishbein,et al.  Continuous-Wave Radar with High Range Resolution and Unambiguous Velocity Determination , 1962, IRE Transactions on Military Electronics.

[5]  Fuqin Xiong Digital Modulation Techniques , 2000 .

[6]  Ram M. Narayanan,et al.  Data-Level Fusion of Multilook Inverse Synthetic Aperture Radar Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  E. Walton,et al.  Ultrawide-band noise radar in the VHF/UHF band , 1999 .

[8]  G. E. Prescott,et al.  Simulation of radiometers for detection of spread spectrum signals , 1990, Conference Proceedings on Tactical Communications, Vol.1..

[9]  E.R. Brown,et al.  Ultra-Wideband Multifunctional Communications/Radar System , 2007, IEEE Transactions on Microwave Theory and Techniques.

[10]  E.R. Brown,et al.  Integrated radar and communications based on chirped spread-spectrum techniques , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[11]  Leonard J. Cimini,et al.  Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing , 1985, IEEE Trans. Commun..

[12]  J. K. Townsend,et al.  Evaluation of the covertness of time-hopping impulse radio using a multi-radiometer detection , 2001, 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277).

[13]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[14]  Ram M. Narayanan,et al.  Ultra-wideband continuous-wave random noise arc-SAR , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  R. Narayanan,et al.  Doppler visibility of coherent ultrawideband random noise radar systems , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[16]  R.F. Mills,et al.  A comparison of various radiometer detection models , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[17]  R.M. Narayanan,et al.  Covert Netted Wireless Noise Radar Sensor: OFDMA-Based Communication Architecture , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[18]  Qing Ruan,et al.  Hilbert-Huang Transform (HHT) Analysis of Human Activities Using Through-Wall Noise Radar , 2007, 2007 International Symposium on Signals, Systems and Electronics.

[19]  Ram M. Narayanan,et al.  Design, performance, and applications of a coherent ultra-wideband random noise radar , 1998 .

[20]  Ram M. Narayanan,et al.  FOPEN SAR imaging using UWB step-frequency and random noise waveforms , 2001 .

[21]  Ram M. Narayanan,et al.  Synchronization for wireless multi-radar covert communication networks , 2007, SPIE Defense + Commercial Sensing.

[22]  R.M. Narayanan,et al.  Implementation of fully polarimetric random noise radar , 2005, IEEE Antennas and Wireless Propagation Letters.

[23]  Sune R.J. Axelsson,et al.  Analysis of Ultra Wide Band Noise Radar with Randomized Stepped Frequency , 2006, 2006 International Radar Symposium.

[24]  R. M. Buehrer,et al.  Issues in the performance and covertness of UWB communications systems , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[25]  John G. Proakis,et al.  Digital Communications , 1983 .

[26]  Chris Baker,et al.  Design and evaluation of a low-cost multistatic netted radar system , 2007 .

[27]  Ram M. Narayanan,et al.  Design and performance of a polarimetric random noise radar for detection of shallow buried targets , 1995, Defense, Security, and Sensing.

[28]  Burton R. Saltzberg,et al.  Multi-Carrier Digital Communications: Theory and Applications of Ofdm , 1999 .

[29]  O.V. Zemlyaniy Experimental Investigation of Chaotic Waveform Generator for Ultra Wide Band Noise Radar , 2006, 2006 International Radar Symposium.

[30]  Gerhard Fettweis,et al.  OFDM Link Performance Analysis under Various Receiver Impairments , 2008, EURASIP J. Wirel. Commun. Netw..

[31]  B. M. Horton Noise-Modulated Distance Measuring Systems , 1959, Proceedings of the IRE.

[32]  Shi Xiang-quan,et al.  Design of noise FM-CW radar and its implementation , 1991 .

[33]  Suen Yek A framework for the use of deception in Network Security , 2003 .

[34]  Ram M. Narayanan Through wall radar imaging using UWB noise waveforms , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[35]  Ram M. Narayanan,et al.  Radar penetration imaging using ultra-wideband (UWB) random noise waveforms , 2004 .

[36]  R. Narayanan,et al.  Receiver operating characteristics for the coherent UWB random noise radar , 2001 .

[37]  D. E. Manolakis,et al.  Efficient solution and performance analysis of 3-D position estimation by trilateration , 1996 .

[38]  John M. Cioffi,et al.  Probability density functions for analyzing multi-amplitude constellations in Rayleigh and Ricean channels , 1999, IEEE Trans. Commun..

[39]  Jonathan Schuerger,et al.  Feasibility study of a multi-carrier dual-use imaging radar and communication system , 2007, 2007 European Radar Conference.

[40]  C. D. McGillem,et al.  RANDOM SIGNAL RADAR , 1967 .

[41]  Hai Deng,et al.  Polyphase code design for Orthogonal Netted Radar systems , 2004, IEEE Trans. Signal Process..

[42]  Ram M. Narayanan,et al.  Inverse synthetic aperture radar imaging using a coherent ultrawideband random noise radar system , 2001 .

[43]  J. R. Forrest,et al.  Solid-state microwave noise radar , 1976 .

[44]  Ram M. Narayanan,et al.  Generalised wideband ambiguity function of a coherent ultrawideband random noise radar , 2003 .

[45]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[46]  R. Stephan,et al.  Theoretical and practical characterization of a broadband random noise radar , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[47]  G. R. Cooper,et al.  A class of noise radar systems , 1963 .

[48]  beotel. yu Spectral Correlation of OFDM Signals Related to Their PLC Applications , 2002 .