An integrated approach to quantifying uncertainties in the remaining carbon budget

[1]  J. Canadell,et al.  Opportunities and challenges in using remaining carbon budgets to guide climate policy , 2020, Nature Geoscience.

[2]  Christopher J. Smith,et al.  Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response , 2020, Geoscientific Model Development.

[3]  V. Brovkin,et al.  Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2 , 2020, Biogeosciences.

[4]  R. Knutti,et al.  Uncertainty in carbon budget estimates due to internal climate variability , 2020, Environmental Research Letters.

[5]  A. MacDougall,et al.  Quantifying the probability distribution function of the transient climate response to cumulative CO2 emissions , 2020, Environmental Research Letters.

[6]  J. Mülmenstädt,et al.  Bounding Global Aerosol Radiative Forcing of Climate Change , 2020, Reviews of geophysics.

[7]  K. Zickfeld,et al.  Supplementary material to "Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)" , 2020 .

[8]  T. Andrews,et al.  Efficacy of Climate Forcings in PDRMIP Models , 2019, Journal of geophysical research. Atmospheres : JGR.

[9]  Martin B. Stolpe,et al.  Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy , 2019, Nature Geoscience.

[10]  L. Clarke,et al.  A new scenario logic for the Paris Agreement long-term temperature goal , 2019, Nature.

[11]  Christopher J. Smith,et al.  Climate and air-quality benefits of a realistic phase-out of fossil fuels , 2019, Nature.

[12]  J. Kennedy,et al.  An Ensemble Data Set of Sea Surface Temperature Change From 1850: The Met Office Hadley Centre HadSST.4.0.0.0 Data Set , 2019, Journal of Geophysical Research: Atmospheres.

[13]  Christopher J. Smith,et al.  Estimating and tracking the remaining carbon budget for stringent climate targets , 2019, Nature.

[14]  J. Rogelj,et al.  The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions , 2019, Geoscientific Model Development.

[15]  Nathan Lenssen,et al.  Improvements in the GISTEMP Uncertainty Model , 2019, Journal of Geophysical Research: Atmospheres.

[16]  T. Andrews,et al.  Understanding Rapid Adjustments to Diverse Forcing Agents , 2018, Geophysical research letters.

[17]  Keywan Riahi,et al.  A new scenario resource for integrated 1.5 °C research , 2018, Nature Climate Change.

[18]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[19]  P. Ciais,et al.  Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release , 2018, Nature Geoscience.

[20]  Jonathan M. Gregory,et al.  Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity , 2018, Geophysical Research Letters.

[21]  M. Scheffer,et al.  Trajectories of the Earth System in the Anthropocene , 2018, Proceedings of the National Academy of Sciences.

[22]  Netherlands.,et al.  Synthesis Report , 2018, Building Resilient Cities.

[23]  Richard G. Williams,et al.  Reconciling Atmospheric and Oceanic Views of the Transient Climate Response to Emissions , 2018, Geophysical Research Letters.

[24]  Christopher J. Smith,et al.  FAIR v1.3: a simple emissions-based impulse response and carbon cycle model , 2018, Geoscientific Model Development.

[25]  Nadine Mengis,et al.  1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing , 2018, Scientific Reports.

[26]  N. Gillett,et al.  Cumulative carbon emissions budgets consistent with 1.5 °C global warming , 2018, Nature Climate Change.

[27]  P. Friedlingstein,et al.  The utility of the historical record for assessing the transient climate response to cumulative emissions , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Tomoko Hasegawa,et al.  Scenarios towards limiting global mean temperature increase below 1.5 °C , 2018, Nature Climate Change.

[29]  Richard G. Williams,et al.  Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints , 2018, Nature Geoscience.

[30]  P. Forster,et al.  A real-time Global Warming Index , 2017, Scientific Reports.

[31]  J. Rogelj,et al.  Getting It Right Matters: Temperature Goal Interpretations in Geoscience Research , 2017 .

[32]  P. Friedlingstein,et al.  Emission budgets and pathways consistent with limiting warming to 1.5 °C , 2017 .

[33]  A. MacDougall The oceanic origin of path-independent carbon budgets , 2017, Scientific Reports.

[34]  P. Friedlingstein,et al.  A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions , 2017 .

[35]  P. Friedlingstein,et al.  Estimating Carbon Budgets for Ambitious Climate Targets , 2017, Current Climate Change Reports.

[36]  G. Myhre,et al.  Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing , 2016 .

[37]  A. Weaver,et al.  The climate response to five trillion tonnes of carbon , 2016 .

[38]  Joeri Rogelj,et al.  Science and policy characteristics of the Paris Agreement temperature goal , 2016 .

[39]  H. Damon Matthews,et al.  Regional estimates of the transient climate response to cumulative CO 2 emissions , 2016 .

[40]  R. Knutti,et al.  Nonlinearities in patterns of long‐term ocean warming , 2016 .

[41]  K. Tachiiri,et al.  Increase of uncertainty in transient climate response to cumulative carbon emissions after stabilization of atmospheric CO2 concentration , 2015 .

[42]  J. Lelieveld,et al.  The contribution of outdoor air pollution sources to premature mortality on a global scale , 2015, Nature.

[43]  R. Knutti,et al.  Mitigation choices impact carbon budget size compatible with low temperature goals , 2015 .

[44]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[45]  K. Cowtan,et al.  Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends , 2014 .

[46]  Elena Shevliakova,et al.  Trajectory sensitivity of the transient climate response to cumulative carbon emissions , 2014 .

[47]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[48]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[49]  F. Joos,et al.  Long-Term climate change commitment and reversibility: An EMIC intercomparison , 2013 .

[50]  Thomas M. Smith,et al.  NOAA's Merged Land-Ocean Surface Temperature Analysis , 2012 .

[51]  S. Solomon,et al.  Cumulative carbon as a policy framework for achieving climate stabilization , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[53]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[54]  N. Gillett,et al.  Is the climate response to CO2 emissions path dependent? , 2012 .

[55]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[56]  W. Landman Climate change 2007: the physical science basis , 2010 .

[57]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[58]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[59]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[60]  J. Hansen,et al.  Improvements in the uncertainty model in the Goddard Institute for Space Studies Surface Temperature (GISTEMP) analysis , 2019 .

[61]  M. V. Vilariño,et al.  Mitigation pathways compatible with 1.5°C in the context of sustainable development , 2018 .

[62]  Philip Goodwin,et al.  Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake , 2015 .

[63]  J. Wurtele,et al.  A New Estimate of the AverageEarth Surface Land TemperatureSpanning 1753 to 2011 , 2013 .

[64]  Cecilia M. Bitz,et al.  Time-Varying Climate Sensitivity from Regional Feedbacks , 2012 .

[65]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[66]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .