Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data

We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.

[1]  M. Padgett,et al.  Methodology for imaging the 3D structure of singularities in scalar and vector optical fields , 2009 .

[2]  MING JIANG,et al.  Detection and Visualization of Vortices , 2005, The Visualization Handbook.

[3]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[4]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[5]  Victor Moshchalkov,et al.  Current-induced giant vortex and asymmetric vortex confinement in microstructured superconductors , 2009 .

[6]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[7]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[8]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[9]  Paul Rosen,et al.  Visualizing Robustness of Critical Points for 2D Time‐Varying Vector Fields , 2013, Comput. Graph. Forum.

[10]  Steady-state and equilibrium vortex configurations, transitions, and evolution in a mesoscopic superconducting cylinder , 2003, cond-mat/0308449.

[11]  Xin Wang,et al.  Tracking scalar features in unstructured data sets , 1998 .

[12]  Hans-Christian Hege,et al.  Visual Analysis of Quantum Physics Data , 2011 .

[13]  Tom Peterka,et al.  Detecting vortices in superconductors: extracting one-dimensional topological singularities from a discretized complex scalar field. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[15]  J. Pauschenwein,et al.  Visualizing Quantum‐Mechanical Wavefunctions in Three Dimensions with AVS , 1996 .

[16]  Hans-Christian Hege,et al.  Cores of Swirling Particle Motion in Unsteady Flows , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[18]  Hans-Christian Hege,et al.  Two-Dimensional Time-Dependent Vortex Regions Based on the Acceleration Magnitude , 2011, IEEE Transactions on Visualization and Computer Graphics.

[19]  Ronald Peikert,et al.  Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[20]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[21]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[22]  Harald Obermaier,et al.  On Mesh-Free Valley Surface Extraction with Application to Low Frequency Sound Simulation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[23]  Simon Stegmaier,et al.  A graphics hardware-based vortex detection and visualization system , 2004, IEEE Visualization 2004.

[24]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[25]  Xin Wang,et al.  Tracking scalar features in unstructured data sets , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[26]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[27]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[28]  Holger Theisel,et al.  Vortex Analysis in Uncertain Vector Fields , 2012, Comput. Graph. Forum.

[29]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[30]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000, Softw. Pract. Exp..

[31]  Andreas Glatz,et al.  Stable large-scale solver for Ginzburg-Landau equations for superconductors , 2014, J. Comput. Phys..

[32]  Nelson L. Max,et al.  A contract based system for large data visualization , 2005, VIS 05. IEEE Visualization, 2005..

[33]  R. Dändliker,et al.  Measuring optical phase singularities at subwavelength resolution , 2004 .

[34]  Gao,et al.  Emergence of coherent patterns of vortex stretching during reconnection: A scattering paradigm. , 1991, Physical review letters.

[35]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[36]  I. Aranson,et al.  Nucleation of spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC crossover , 2011, 1102.1792.

[37]  Kwan-Liu Ma,et al.  Design Considerations for Optimizing Storyline Visualizations , 2012, IEEE Transactions on Visualization and Computer Graphics.

[38]  Qiang Du,et al.  Numerical approximations of the Ginzburg–Landau models for superconductivity , 2005 .

[39]  Hans Hagen,et al.  Tensor Topology Tracking: A Visualization Method for Time‐Dependent 2D Symmetric Tensor Fields , 2001, Comput. Graph. Forum.