High Performance High-power Textured Mn/Cu-doped PIN-PMN-PT Ceramics

[1]  R. Meyer,et al.  Mn‐ and Mn/Cu‐doped PIN‐PMN‐PT piezoelectric ceramics for high‐power transducers , 2020 .

[2]  Chunlin Zhao,et al.  Defect Engineering in Lead Zirconate Titanate Ferroelectric Ceramic for Enhanced Electromechanical Transducer Efficiency , 2020, Advanced Functional Materials.

[3]  Shujun Zhang,et al.  Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics , 2020, Nature Materials.

[4]  J. Blottman,et al.  High performance high power textured piezoceramics , 2020 .

[5]  W. Cao,et al.  High‐Performance [001]c‐Textured PNN‐PZT Relaxor Ferroelectric Ceramics for Electromechanical Coupling Devices , 2020, Advanced Functional Materials.

[6]  R. Meyer,et al.  Low temperature reactive sintering of CuO-doped PIN-PMN-PT ceramics , 2019 .

[7]  Kentaro Nakamura,et al.  Anisotropy of the high‐power piezoelectric properties of Pb(Zr,Ti)O 3 , 2019, Journal of the American Ceramic Society.

[8]  Bo Wang,et al.  Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method , 2019, Annual Review of Materials Research.

[9]  J. Zhai,et al.  High-performance potassium-sodium niobate lead-free piezoelectric ceramics based on polymorphic phase boundary and crystallographic texture , 2019, Acta Materialia.

[10]  W. Cao,et al.  Theoretical study on local domain pinning effect due to defect dipole alignment , 2018, Journal of Physics D: Applied Physics.

[11]  Bing Xie,et al.  Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics , 2018, Acta Materialia.

[12]  T. Shrout,et al.  Ferroelectrics: Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics (Adv. Funct. Mater. 37/2018) , 2018, Advanced Functional Materials.

[13]  W. Cao,et al.  Significantly Enhanced Energy-Harvesting Performance and Superior Fatigue-Resistant Behavior in [001]c-Textured BaTiO3-Based Lead-Free Piezoceramics. , 2018, ACS applied materials & interfaces.

[14]  Da Huo,et al.  Origin of Improvement in Mechanical Quality Factor in Acceptor-Doped Relaxor-Based Ferroelectric Single Crystals , 2018, Physical Review Applied.

[15]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[16]  J. Zhai,et al.  Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3‐Based Lead‐Free Ceramics , 2018, Advanced materials.

[17]  Thomas Tybell,et al.  Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting , 2017, Advanced Structural and Chemical Imaging.

[18]  Zhenxiang Cheng,et al.  The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals , 2016, Nature Communications.

[19]  John A. Rogers,et al.  Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation , 2016 .

[20]  Wen‐hua Jiang,et al.  Losses in Ferroelectric Materials. , 2015, Materials science & engineering. R, Reports : a review journal.

[21]  S. Alpay,et al.  Misfit strain phase diagrams of epitaxial PMN–PT films , 2015 .

[22]  Sergei V. Kalinin,et al.  Fundamental limitation to the magnitude of piezoelectric response of ⟨001⟩pc textured K0.5Na0.5NbO3 ceramic , 2014 .

[23]  Limei Zheng,et al.  Orientation dependence of piezoelectric properties and mechanical quality factors of 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3:Mn single crystals , 2013 .

[24]  Seok-Jin Yoon,et al.  High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators , 2013 .

[25]  Genshui Wang,et al.  Linear temperature scaling of ferroelectric hysteresis in Mn-doped Pb(Mn1/3Sb2/3)O3-Pb(Zr,Ti)O3 ceramic with internal bias field , 2013 .

[26]  W. Cao,et al.  Influence of manganese doping to the full tensor properties of 0.24Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals. , 2013, Journal of applied physics.

[27]  Amit Kumar,et al.  Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics , 2013 .

[28]  S. Priya,et al.  Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics , 2012 .

[29]  Shashank Priya,et al.  Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics , 2012 .

[30]  R. Zuo,et al.  Synthesis and characterization of (001) oriented BaTiO3 platelets through a topochemical conversion , 2012 .

[31]  Shashank Priya,et al.  Role of Secondary Phase in High Power Piezoelectric PMN‐PZT Ceramics , 2011 .

[32]  R. Meyer,et al.  Processing, texture quality, and piezoelectric properties of C textured (1-x)Pb(Mg1/3Nb2/3)TiO3 - xPbTiO3 ceramics , 2011 .

[33]  K. Kim,et al.  Effect of MnO2 on the Piezoelectric Properties of the 0.75Pb(Zr0.47Ti0.53)O3–0.25Pb(Zn1/3Nb2/3)O3 Ceramics , 2010 .

[34]  W. Cao,et al.  A complete set of material properties of single domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals , 2010 .

[35]  G. Rossetti,et al.  Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states , 2008 .

[36]  T. Takenaka,et al.  Lead-free piezoelectric ceramics based on perovskite structures , 2007 .

[37]  K. Uchino,et al.  Effect of ZnO and CuO on the Sintering Temperature and Piezoelectric Properties of a Hard Piezoelectric Ceramic , 2006 .

[38]  K. Hong,et al.  Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. , 2004, Physical review letters.

[39]  Xiaobing Ren,et al.  Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching , 2004, Nature materials.

[40]  D. Viehland,et al.  Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.

[41]  S. Trolier-McKinstry,et al.  Dielectric and piezoelectric properties of 〈001〉 fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics , 2003 .

[42]  D. Dimos,et al.  Oxygen Vacancy Motion in Perovskite Oxides , 1996 .

[43]  F. Lotgering,et al.  Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I , 1959 .

[44]  R. Meyer,et al.  Templated Grain Growth of Textured PMN‐28PT Using SrTiO3 Templates , 2009 .

[45]  N. Setter,et al.  Piezoelectric anisotropy: Enhanced piezoelectric response along nonpolar directions in perovskite crystals , 2006 .

[46]  P. Rehrig,et al.  Dielectric and electromechanical properties of barium titanate single crystals grown by templated grain growth , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.