The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor

Crystallographic studies of neuraminidase–sialic acid complexes indicate that sialic acid is distorted on binding the enzyme. Three arginine residues on the enzyme interact with the carboxylate group of the sugar which is observed to be equatorial to the saccharide ring as a consequence of its distorted geometry. The glycosidic oxygen is positioned within hydrogen‐bonding distance of Asp‐151, implicating this residue in catalysis. © 1992 Wiley‐Liss, Inc.

[1]  F A Quiocho,et al.  Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. , 1986, Annual review of biochemistry.

[2]  J. N. Varghese,et al.  Three-dimensional structure of a complex of antibody with influenza virus neuraminidase , 1987, Nature.

[3]  J. Kamerling,et al.  Release of sialic acid from substrates by sialidase in the presence of H2[18O]. , 1984, Carbohydrate research.

[4]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[5]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[6]  A. Brunger Crystallographic refinement by simulated annealing , 1988 .

[7]  R. E. Huber,et al.  Site-directed mutagenesis of beta-galactosidase (E. coli) reveals that tyr-503 is essential for activity. , 1988, Biochemical and biophysical research communications.

[8]  W G Laver,et al.  Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. , 1992, Journal of molecular biology.

[9]  G. Air,et al.  Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism. , 1987, Biochemistry.

[10]  Michael G. Rossmann,et al.  Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting , 1979 .

[11]  A. Kortt,et al.  A new method for the purification of the influenza A virus neuraminidase. , 1991, Journal of virological methods.

[12]  J. N. Varghese,et al.  Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution , 1983, Nature.

[13]  H. Friebolin,et al.  1 H-NMR-Spektroskopischer Nachweis der N-Acetyl-α-D-neuraminsäure als primäres Spaltprodukt der Neuraminidasen , 1980 .

[14]  M. Karplus,et al.  Does lysozyme follow the lysozyme pathway? An alternative based on dynamic, structural, and stereoelectronic considerations , 1986 .

[15]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[16]  G. Air,et al.  Antigenic structure and variation in an influenza virus N9 neuraminidase , 1987, Journal of virology.

[17]  T. Higashi The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography , 1989 .

[18]  D. Phillips,et al.  The three-dimensional structure of an enzyme molecule. , 1966, Scientific American.

[19]  M. Flashner,et al.  Mechanism of Arthrobacter sialophilus neuraminidase: the binding of substrates and transition-state analogs. , 1978, Biochemical and biophysical research communications.

[20]  A. van Donkelaar,et al.  Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. , 1992, Journal of molecular biology.

[21]  P. Palese,et al.  Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. , 1974, Virology.

[22]  M. James,et al.  Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. , 1991, Journal of molecular biology.

[23]  B. Matthews,et al.  Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. , 1981, Journal of molecular biology.

[24]  N. Sakabe X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation , 1991 .

[25]  P. Colman,et al.  Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. , 1991, Journal of molecular biology.

[26]  M. Vonitzstein,et al.  Characterisation of an ionisable group involved in binding and catalysis by sialidase from influenza virus. , 1991 .

[27]  A. Gottschalk Neuraminidase: the specific enzyme of influenza virus and Vibrio cholerae. , 1957, Biochimica et biophysica acta.

[28]  M. Flashner,et al.  The interaction of substrate-related ketals with bacterial and viral neuraminidases. , 1983, Archives of biochemistry and biophysics.

[29]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[30]  J. N. Varghese,et al.  Structure of the catalytic and antigenic sites in influenza virus neuraminidase , 1983, Nature.