Advanced Micromagnetic Analysis of Write Head Dynamics Using Fastmag

Magnetization and magnetic field dynamics arising when switching a realistic recording head model is studied. The write head design comprises a return pole, yoke, main pole, tapered trapezoidal pole tip, tapered wrap around shield (WAS), and soft underlayer. The analysis was performed using the high-performance micromagnetic simulator FastMag, which is well suited for the write head dynamic problems due to its ability to handle complex magnetic devices discretized into many millions of elements. The head dynamics is considered for different mesh densities, switching data rates, and current waveforms. It is demonstrated that improper discretization may result in a very different magnetization behavior. This is especially pronounced for cases of high switching rates, for which meshes of insufficient density resulted in a completely incorrect behavior, e.g. absence of switching. On the other hand, sufficiently dense meshes resulted in reliable dynamics and switching behavior. Furthermore, magnetization dynamics effects in WAS and their effects on the magnetostatic fields in the media layer were studied. WAS significantly improves the head field gradients in both down- and off-track directions, which is important for high areal recording densities. However, the presence of WAS leads to reduced write fields below the pole tip and to significant undesired magnetostatic fields below the side shields in the media layer. Such undesired fields can be obtained close to the pole tip as well as far from the tip. These phenomena result from the domain wall creation, propagation, and annihilation in WAS due to the switching. The field close to the pole tip can result in adjacent track erasure, while fields far from the tip can lead to far track erasure. The existence of these fields should be accounted for when performing recording system design optimization and analysis.

[1]  Degaussing of Write Heads in Perpendicular Magnetic Recording , 2011, IEEE Transactions on Magnetics.

[2]  Werner Scholz,et al.  Time resolved micromagnetics using a preconditioned time integration method , 2002 .

[3]  Shaojing Li,et al.  Graphics Processing Unit Accelerated $O(N)$ Micromagnetic Solver , 2010, IEEE Transactions on Magnetics.

[4]  Mourad Benakli,et al.  One terabit per square inch perpendicular recording conceptual design , 2002 .

[5]  Ruinan Chang,et al.  Chapter 19 – Fast Electromagnetic Integral Equation Solvers on Graphics Processing Units , 2012 .

[6]  Boris Livshitz,et al.  FastMag: Fast micromagnetic simulator for complex magnetic structures , 2011 .

[7]  Y. Kanai,et al.  Micromagnetic Simulations of Perpendicular Single-Pole-Type Head for Various Pole-Tip Structures , 2006, IEEE Transactions on Magnetics.

[8]  N. Honda,et al.  Shielded planar write head , 2008 .

[9]  A. Boag,et al.  Adaptive Nonuniform-Grid (NG) Algorithm for Fast Capacitance Extraction , 2006, IEEE Transactions on Microwave Theory and Techniques.

[10]  Amir Boag,et al.  Nonuniform grid algorithm for fast calculation of magnetostatic interactions in micromagnetics , 2009 .

[11]  M. Dovek,et al.  High Density Perpendicular Recording With Wrap-Around Shielded Writer , 2010, IEEE Transactions on Magnetics.

[12]  Shaojing Li,et al.  Fast Electromagnetic Integral-Equation Solvers on Graphics Processing Units , 2012, IEEE Antennas and Propagation Magazine.

[13]  Shaojing Li,et al.  Fast evaluation of Helmholtz potential on graphics processing units (GPUs) , 2010, J. Comput. Phys..

[14]  H. Muraoka,et al.  Micromagnetic Recording Field Analysis of a Single-Pole-Type Head for 1–2 ${\hbox {Tbit/in}}^{2}$ , 2008, IEEE Transactions on Magnetics.