Band‐Selective Infrared Photodetectors with Complete‐Composition‐Range InAsxP1‐x Alloy Nanowires

Band-selective infrared photodetectors (PDs) are constructed with InAs(x)P(1-x) alloy nanowires from the complete composition range (0 ≤ x ≤ 1) achieved by a new growth route combining the vapor-liquid-solid mechanism with an additional ion-exchange process. Increasing the composition x value from 0 to 1 in the PDs allows the peak response wavelength to be gradually tuned from ca. 900 to ca. 2900 nm.

[1]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[2]  Liang Li,et al.  CdS Nanoscale Photodetectors , 2014, Advanced materials.

[3]  A. Krotkus,et al.  Strong terahertz emission and its origin from catalyst-free InAs nanowire arrays. , 2014, Nano letters.

[4]  H. Xu,et al.  Room-temperature near-infrared photodetectors based on single heterojunction nanowires. , 2014, Nano letters.

[5]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[6]  J. Ho,et al.  Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. , 2013, Nanoscale.

[7]  G. Shen,et al.  High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared , 2013, Nano Research.

[8]  J. Wu,et al.  High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire , 2013, Nanoscale Research Letters.

[9]  Xiuling Li,et al.  Wafer-scale production of uniform InAs(y)P(1-y) nanowire array on silicon for heterogeneous integration. , 2013, ACS nano.

[10]  Lars-Erik Wernersson,et al.  Diameter-Dependent photocurrent in InAsSb nanowire infrared photodetectors. , 2013, Nano letters.

[11]  Jinyou Xu,et al.  Surface plasmon resonance enhanced band-edge emission of CdS–SiO2 core–shell nanowires with gold nanoparticles attached , 2013 .

[12]  K. Okamura,et al.  Analysis of temperature dependence of electrical conductivity in degenerate n-type polycrystalline InAsP films in an energy-filtering model with potential fluctuations at grain boundaries , 2012 .

[13]  Muhammad Safdar,et al.  High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In₂Te₃ nanostructures. , 2012, Nano letters.

[14]  Xingao Gong,et al.  An Optimized Ultraviolet‐A Light Photodetector with Wide‐Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt , 2012, Advanced materials.

[15]  F. Capasso,et al.  Electrical and optical properties of InP nanowire ensemble p+–i–n+ photodetectors , 2012, Nanotechnology.

[16]  C. Ning,et al.  Contact printing of compositionally graded CdSxSe1−x nanowire parallel arrays for tunable photodetectors , 2012, Nanotechnology.

[17]  C. Ning,et al.  Composition and Bandgap‐Graded Semiconductor Alloy Nanowires , 2012, Advances in Materials.

[18]  S. Chang,et al.  A CuO nanowire infrared photodetector , 2011 .

[19]  Meiyong Liao,et al.  Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. , 2011, Small.

[20]  Youngjin Choi,et al.  Network-bridge structure of CdSxSe1 − x nanowire-based optical sensors , 2010, Nanotechnology.

[21]  L. Dai,et al.  High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices , 2010 .

[22]  M. Ozkan,et al.  Chemical vapor deposition and electrical characterization of sub-10 nm diameter InSb nanowires and field-effect transistors , 2010 .

[23]  Pengyu Fan,et al.  Resonant germanium nanoantenna photodetectors. , 2010, Nano letters.

[24]  Andreas Waag,et al.  ZnO-GaN Hybrid Heterostructures as Potential Cost-Efficient LED Technology , 2010, Proceedings of the IEEE.

[25]  C. Ning,et al.  Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. , 2010, ACS nano.

[26]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[27]  Ruibin Liu,et al.  Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. , 2009, Nano letters.

[28]  Chongwu Zhou,et al.  Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors , 2008 .

[29]  Jeunghee Park,et al.  Chemical Conversion Reaction between CdS Nanobelts and ZnS Nanobelts by Vapor Transport , 2007 .

[30]  L. Samuelson,et al.  InAs1-xPx nanowires for device engineering. , 2006, Nano letters.

[31]  J.S. Harris,et al.  Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing , 2004, IEEE Journal of Quantum Electronics.

[32]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[33]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[34]  Y. Takeda,et al.  Measurements of heat of formation of GaP, InP, GaAs, InAs, GaSb and InSb , 1994 .

[35]  B. Wessels,et al.  Heteroepitaxial growth of high mobility InAsP from the vapor phase , 1984 .

[36]  G. A. Antypas,et al.  Growth and Characterization of Liquid‐Phase Epitaxial InAs1−xPx , 1971 .

[37]  R. Bowers,et al.  InAs1‐xPx as a Thermoelectric Material , 1959 .