An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations

This paper presents an explicit vertex centred finite volume method for the solution of fast transient isothermal large strain solid dynamics via a system of first order hyperbolic conservation laws. Building upon previous work developed by the authors, in the context of alternative numerical discretisations, this paper explores the use of a series of enhancements (both from the formulation and numerical standpoints) in order to explore some limiting scenarios, such as the consideration of near and true incompressibility. Both Total and Updated Lagrangian formulations are presented and compared at the discrete level, where very small differences between both descriptions are observed due to the excellent discrete satisfaction of the involutions. In addition, a matrix-free tailor-made artificial compressibility algorithm is discussed and combined with an angular momentum projection algorithm. A wide spectrum of numerical examples is thoroughly examined. The scheme shows excellent (stable, consistent and accurate) behaviour, in comparison with other methodologies, in compressible, nearly incompressible and truly incompressible bending dominated scenarios, yielding equal second order of convergence for velocities, deviatoric and volumetric components of the stress.

[1]  Yuki Onishi F-Bar Aided Edge-Based Smoothed Finite Element Method with 4-Node Tetrahedral Elements for Static Large Deformation Elastoplastic Problems , 2019, International Journal of Computational Methods.

[2]  Michael A. Puso,et al.  A stabilized nodally integrated tetrahedral , 2006 .

[3]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[4]  C. Bailey,et al.  Dynamic solid mechanics using finite volume methods , 2003 .

[5]  Philip Cardiff,et al.  Development of a finite volume contact solver based on the penalty method , 2012 .

[6]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[7]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[8]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[9]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[10]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[11]  B. Carnes,et al.  A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach , 2016 .

[12]  Rémi Abgrall,et al.  A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..

[13]  Nabil H. Abboud,et al.  A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements , 2017 .

[14]  C. Bailey,et al.  A vertex‐based finite volume method applied to non‐linear material problems in computational solid mechanics , 2003 .

[15]  Kenji Amaya,et al.  A locking‐free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems , 2014 .

[16]  Bruno Després,et al.  Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..

[17]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[18]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[19]  Rogelio Ortigosa,et al.  A computational framework for polyconvex large strain elasticity for geometrically exact beam theory , 2015, Computational Mechanics.

[20]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[21]  A. J. Gil,et al.  A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics , 2019, Computer Methods in Applied Mechanics and Engineering.

[22]  Clark R. Dohrmann,et al.  A uniform nodal strain tetrahedron with isochoric stabilization , 2009 .

[23]  Mikhail Shashkov,et al.  A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .

[24]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[25]  Antonio J. Gil,et al.  An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics , 2015, J. Comput. Phys..

[26]  Xianyi Zeng,et al.  A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions , 2017 .

[27]  A. J. Gil,et al.  A variationally consistent Streamline Upwind Petrov–Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics , 2017 .

[28]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[29]  Tzanio V. Kolev,et al.  High order curvilinear finite elements for elastic-plastic Lagrangian dynamics , 2014, J. Comput. Phys..

[30]  Rogelio Ortigosa,et al.  A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity , 2016 .

[31]  Manuel Torrilhon,et al.  Constraint-Preserving Upwind Methods for Multidimensional Advection Equations , 2004, SIAM J. Numer. Anal..

[32]  F. Auricchio,et al.  A three-dimensional finite-strain phenomenological model for shape-memory polymers: Formulation, numerical simulations, and comparison with experimental data , 2016 .

[33]  Ngoc Cuong Nguyen,et al.  Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics , 2012, J. Comput. Phys..

[34]  Antonio J. Gil,et al.  A vertex centred Finite Volume Jameson-Schmidt-Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics , 2014, J. Comput. Phys..

[35]  P. Cardiff,et al.  A Lagrangian cell‐centred finite volume method for metal forming simulation , 2017 .

[36]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[37]  M. Chial,et al.  in simple , 2003 .

[38]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[39]  Clark R. Dohrmann,et al.  Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes , 1999 .

[40]  Antonio J. Gil,et al.  A coupled hp-finite element scheme for the solution of two-dimensional electrostrictive materials , 2012 .

[41]  Nabil H. Abboud,et al.  Implicit finite incompressible elastodynamics with linear finite elements: A stabilized method in rate form , 2016 .

[42]  John A. Trangenstein,et al.  A second-order Godunov algorithm for two-dimensional solid mechanics , 1994 .

[43]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..

[44]  Rémi Abgrall,et al.  A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids , 2013, J. Comput. Phys..

[45]  A. J. Gil,et al.  A first‐order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme , 2017 .

[46]  Antonio J. Gil,et al.  Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics , 2013 .

[47]  Antonio J. Gil,et al.  A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics , 2014 .

[48]  Rogelio Ortigosa,et al.  On a tensor cross product based formulation of large strain solid mechanics , 2016 .

[49]  A. J. Gil,et al.  An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications , 2018, Computer Methods in Applied Mechanics and Engineering.

[50]  Phillip Colella,et al.  A higher-order Godunov method for modeling finite deformation in elastic-plastic solids , 1991 .

[51]  Rogelio Ortigosa,et al.  A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity , 2015 .

[52]  Oubay Hassan,et al.  An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications , 2001 .

[53]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[54]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[55]  J. Bonet,et al.  Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications , 2001 .

[56]  E. A. de Souza Neto,et al.  An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains , 2004 .

[57]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[58]  Antonio J. Gil,et al.  A two-step Taylor-Galerkin formulation for fast dynamics , 2014 .

[59]  Antonio J. Gil,et al.  Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics , 2014 .

[60]  Rainald Löhner,et al.  An improved finite volume scheme for compressible flows on unstructured grids , 1995 .

[61]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[62]  Nabil H. Abboud,et al.  Elastoplasticity with linear tetrahedral elements: A variational multiscale method , 2018 .

[63]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[64]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[65]  Philip Cardiff,et al.  A large strain finite volume method for orthotropic bodies with general material orientations , 2014 .

[66]  A. J. Gil,et al.  A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics , 2016 .

[67]  Mark L. Wilkins,et al.  Impact of cylinders on a rigid boundary , 1973 .

[68]  I. Bijelonja,et al.  A finite volume method for incompressible linear elasticity , 2006 .

[69]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[70]  J. Peraire,et al.  A variationally consistent mesh adaptation method for triangular elements in explicit Lagrangian dynamics , 2010 .

[71]  J. Breil,et al.  A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity , 2017 .