A scaffolding approach to coreference resolution integrating statistical and rule-based models

We describe a scaffolding approach to the task of coreference resolution that incrementally combines statistical classifiers, each designed for a particular mention type, with rule-based models (for sub-tasks well-matched to determinism). We motivate our design by an oracle-based analysis of errors in a rule-based coreference resolution system, showing that rule-based approaches are poorly suited to tasks that require a large lexical feature space, such as resolving pronominal and common-noun mentions. Our approach combines many advantages: it incrementally builds clusters integrating joint information about entities, uses rules for deterministic phenomena, and integrates rich lexical, syntactic, and semantic features with random forest classifiers well-suited to modeling the complex feature interactions that are known to characterize the coreference task. We demonstrate that all these decisions are important. The resulting system achieves 63.2 F1 on the CoNLL-2012 shared task dataset, outperforming the rule-based starting point by over seven F1 points. Similarly, our system outperforms an equivalent sieve-based approach that relies on logistic regression classifiers instead of random forests by over four F1 points. Lastly, we show that by changing the coreference resolution system from relying on constituent-based syntax to using dependency syntax, which can be generated in linear time, we achieve a runtime speedup of 550 per cent without considerable loss of accuracy.

[1]  Jian Su,et al.  An Entity-Mention Model for Coreference Resolution with Inductive Logic Programming , 2008, ACL.

[2]  Sophia Ananiadou,et al.  BioNLP: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing , 2012 .

[3]  Xiaoqiang Luo,et al.  On Coreference Resolution Performance Metrics , 2005, HLT.

[4]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[5]  Andrew Kehler,et al.  Probabilistic Coreference in Information Extraction , 1997, EMNLP.

[6]  Barry Haddow,et al.  Proceedings of NAACL-HLT 2013 , 2013 .

[7]  Xiaoqiang Luo,et al.  A Mention-Synchronous Coreference Resolution Algorithm Based On the Bell Tree , 2004, ACL.

[8]  Richard Evans,et al.  Coreference Resolution: To What Extent Does It Help NLP Applications? , 2012, TSD.

[9]  Christopher D. Manning,et al.  Entity-Centric Coreference Resolution with Model Stacking , 2015, ACL.

[10]  Jerry R. Hobbs Resolving pronoun references , 1986 .

[11]  Jason Weston,et al.  Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolution , 2015, ACL.

[12]  Jonas Kuhn,et al.  Learning Structured Perceptrons for Coreference Resolution with Latent Antecedents and Non-local Features , 2014, ACL.

[13]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[14]  Karel Jezek,et al.  Two uses of anaphora resolution in summarization , 2007, Inf. Process. Manag..

[15]  Daniel Jurafsky,et al.  Same Referent, Different Words: Unsupervised Mining of Opaque Coreferent Mentions , 2013, NAACL.

[16]  Daniel Marcu,et al.  A Large-Scale Exploration of Effective Global Features for a Joint Entity Detection and Tracking Model , 2005, HLT.

[17]  Hwee Tou Ng,et al.  A Machine Learning Approach to Coreference Resolution of Noun Phrases , 2001, CL.

[18]  Dan Roth,et al.  Understanding the Value of Features for Coreference Resolution , 2008, EMNLP.

[19]  Roger Levy,et al.  Tregex and Tsurgeon: tools for querying and manipulating tree data structures , 2006, LREC.

[20]  Whitney Gegg-Harrison,et al.  Identifying Non-Referential it: A Machine Learning Approach Incorporating Linguistically Motivated Patterns , 2005, ACL 2005.

[21]  W. B. Roberts,et al.  Machine Learning: The High Interest Credit Card of Technical Debt , 2014 .

[22]  Andrew McCallum,et al.  Conditional Models of Identity Uncertainty with Application to Noun Coreference , 2004, NIPS.

[23]  Dan Klein,et al.  Error-Driven Analysis of Challenges in Coreference Resolution , 2013, EMNLP.

[24]  António Branco,et al.  Anaphora processing : linguistic, cognitive and computational modelling , 2005 .

[25]  Claire Gardent,et al.  Improving Machine Learning Approaches to Coreference Resolution , 2002, ACL.

[26]  Dan Klein,et al.  Easy Victories and Uphill Battles in Coreference Resolution , 2013, EMNLP.

[27]  Mihai Surdeanu,et al.  Two Practical Rhetorical Structure Theory Parsers , 2015, NAACL.

[28]  Wendy G. Lehnert,et al.  Using Decision Trees for Coreference Resolution , 1995, IJCAI.

[29]  Richard Evans,et al.  Anaphora Resolution: To What Extent Does It Help NLP Applications? , 2007, DAARC.

[30]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[31]  Christopher D. Manning,et al.  The Stanford Typed Dependencies Representation , 2008, CF+CDPE@COLING.

[32]  Luke S. Zettlemoyer,et al.  Joint Coreference Resolution and Named-Entity Linking with Multi-Pass Sieves , 2013, EMNLP.

[33]  Breck Baldwin,et al.  Algorithms for Scoring Coreference Chains , 1998 .

[34]  Dan Roth,et al.  Learning-based Multi-Sieve Co-reference Resolution with Knowledge , 2012, EMNLP-CoNLL.

[35]  Halil Kilicoglu,et al.  Interpreting Consumer Health Questions: The Role of Anaphora and Ellipsis , 2013, BioNLP@ACL.

[36]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[37]  Chen Chen,et al.  Combining the Best of Two Worlds: A Hybrid Approach to Multilingual Coreference Resolution , 2012, EMNLP-CoNLL Shared Task.

[38]  Danqi Chen,et al.  A Fast and Accurate Dependency Parser using Neural Networks , 2014, EMNLP.

[39]  Heeyoung Lee,et al.  Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules , 2013, CL.

[40]  Dan Klein,et al.  A Joint Model for Entity Analysis: Coreference, Typing, and Linking , 2014, TACL.

[41]  Su Jian,et al.  A high-performance coreference resolution system using a constraint-based multi-agent strategy , 2004, COLING 2004.

[42]  Ellen Riloff,et al.  Domain-Specific Coreference Resolution with Lexicalized Features , 2013, ACL.

[43]  Kurt Keutzer,et al.  Efficient Parallel CKY Parsing on GPUs , 2011, IWPT.

[44]  Ryan Gabbard,et al.  Coreference for Learning to Extract Relations: Yes Virginia, Coreference Matters , 2011, ACL.

[45]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[46]  Jon Oberlander,et al.  IN PROCEEDINGS OF EACL-2006 , 2006 .

[47]  Jonathan Ginzburg,et al.  Proceedings of COLING 2004 , 2004 .

[48]  Shalom Lappin,et al.  An Algorithm for Pronominal Anaphora Resolution , 1994, CL.

[49]  Yuchen Zhang,et al.  CoNLL-2012 Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes , 2012, EMNLP-CoNLL Shared Task.

[50]  Christopher D. Manning,et al.  Deep Reinforcement Learning for Mention-Ranking Coreference Models , 2016, EMNLP.

[51]  Roland Stuckardt,et al.  A Machine Learning Approach to Preference Strategies for Anaphor Resolution , 2005 .

[52]  Brian Roark,et al.  Classifying Chart Cells for Quadratic Complexity Context-Free Inference , 2008, COLING.

[53]  Dan Klein,et al.  Simple Coreference Resolution with Rich Syntactic and Semantic Features , 2009, EMNLP.

[54]  Claire Cardie,et al.  Conundrums in Noun Phrase Coreference Resolution: Making Sense of the State-of-the-Art , 2009, ACL.

[55]  Mitchell P. Marcus,et al.  OntoNotes: A Unified Relational Semantic Representation , 2007, International Conference on Semantic Computing (ICSC 2007).

[56]  Yang Xiang,et al.  A Mixed Deterministic Model for Coreference Resolution , 2012, EMNLP-CoNLL Shared Task.

[57]  Fredric C. Gey,et al.  Proceedings of LREC , 2010 .

[58]  Vincent Ng,et al.  Supervised Models for Coreference Resolution , 2009, EMNLP.

[59]  Roland Stuckardt Machine-Learning-Based vs. Manually Designed Approaches to Anaphor Resolution: the Best of Two Worlds , 2002 .

[60]  Dan Klein,et al.  Coreference Resolution in a Modular, Entity-Centered Model , 2010, NAACL.

[61]  Vincent Ng,et al.  Supervised Noun Phrase Coreference Research: The First Fifteen Years , 2010, ACL.

[62]  Edith Bolling Anaphora Resolution , 2006 .

[63]  Vincent Ng,et al.  Unsupervised Models for Coreference Resolution , 2008, EMNLP.

[64]  Lynette Hirschman,et al.  A Model-Theoretic Coreference Scoring Scheme , 1995, MUC.

[65]  Shay B. Cohen,et al.  Proceedings of ACL , 2013 .

[66]  Heeyoung Lee,et al.  A Multi-Pass Sieve for Coreference Resolution , 2010, EMNLP.

[67]  Eraldo Rezende Fernandes,et al.  Latent Structure Perceptron with Feature Induction for Unrestricted Coreference Resolution , 2012, EMNLP-CoNLL Shared Task.

[68]  Pascal Denis,et al.  Specialized Models and Ranking for Coreference Resolution , 2008, EMNLP.

[69]  Heeyoung Lee,et al.  Stanford’s Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011 Shared Task , 2011, CoNLL Shared Task.

[70]  Mirella Lapata,et al.  Proceedings of EMNLP 2004 , 2004 .

[71]  Christoph Müller,et al.  Automatic Detection of Nonreferential It in Spoken Multi-Party Dialog , 2006, EACL.

[72]  Daniel Jurafsky,et al.  Parsing to Stanford Dependencies: Trade-offs between Speed and Accuracy , 2010, LREC.

[73]  Hai Zhao,et al.  Chinese Coreference Resolution via Ordered Filtering , 2012, EMNLP-CoNLL Shared Task.

[74]  Dan Roth,et al.  Using domain knowledge and domain-inspired discourse model for coreference resolution for clinical narratives , 2013, J. Am. Medical Informatics Assoc..

[75]  Mirella Lapata,et al.  Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) , 2008 .

[76]  Dan Klein,et al.  Improved Inference for Unlexicalized Parsing , 2007, NAACL.

[77]  Alexander M. Rush,et al.  Learning Global Features for Coreference Resolution , 2016, NAACL.

[78]  Jian Su,et al.  A High-Performance Coreference Resolution System using a Constraint-based Multi-Agent Strategy , 2004, COLING.

[79]  Pascal Denis,et al.  Joint Determination of Anaphoricity and Coreference Resolution using Integer Programming , 2007, NAACL.