Approximation of Hamiltonian Systems using an Alternative Variational Technique
暂无分享,去创建一个
P. Pedregal | S. Amat | M. Jos
[1] R. D. Vogelaere,et al. Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .
[2] K. Burrage,et al. Stability Criteria for Implicit Runge–Kutta Methods , 1979 .
[3] M. Crouzeix. Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .
[4] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[5] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[6] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[7] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[8] J. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .
[9] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[10] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[11] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[12] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[13] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[14] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[15] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[16] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[17] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .
[18] P. Pedregal,et al. A variational approach to implicit ODEs and differential inclusions , 2009 .
[19] L. Brugnano,et al. Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2010, SIAM J. Numer. Anal..
[20] P. Pedregal. A Variational Approach to Dynamical Systems and Its Numerical Simulation , 2010 .
[21] W. Zhong,et al. Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in Astrodynamics , 2011 .
[22] Donato Trigiante,et al. A two-step, fourth-order method with energy preserving properties , 2011, Comput. Phys. Commun..
[23] Donato Trigiante,et al. Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2012, SIAM J. Numer. Anal..
[24] P. Pedregal,et al. On a variational approach for the analysis and numerical simulation of ODEs , 2012 .
[25] Kristian Kirsch,et al. Theory Of Ordinary Differential Equations , 2016 .
[26] On Difference Schemes and Symplectic Geometry ? X1 Introductory Remarks , 2022 .
[27] L. Brugnano,et al. A Two Step, Fourth Order, Nearly-linear Method with Energy Preserving Properties * , 2022 .