Approximation of Hamiltonian Systems using an Alternative Variational Technique

Hamiltonian systems are related to numerous areas of mathematics and have a lot of application branches, such as classic al and quantum mechanics, statistics, optical, astronomy, molecular dynamic, plasma physics, etc. In general, the integration of these systems requires the use of geometric integrators. In this p aper, we introduce a new variational approach for models which are formulated naturally as conservative systems of ODEs, most importantly Hamiltonian systems. Our variational method for Hamiltonian systems, which is proposed here, is in some sense symplectic and energy preserving. In addition to introducing the technique, we briefly indicate its most basic properties, and test its numerical p erformance in some simple examples

[1]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[2]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[3]  M. Crouzeix Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .

[4]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[5]  F. Lasagni Canonical Runge-Kutta methods , 1988 .

[6]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[7]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[8]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[9]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[10]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[12]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[13]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[14]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[15]  M. J,et al.  RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .

[16]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[17]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[18]  P. Pedregal,et al.  A variational approach to implicit ODEs and differential inclusions , 2009 .

[19]  L. Brugnano,et al.  Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2010, SIAM J. Numer. Anal..

[20]  P. Pedregal A Variational Approach to Dynamical Systems and Its Numerical Simulation , 2010 .

[21]  W. Zhong,et al.  Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in Astrodynamics , 2011 .

[22]  Donato Trigiante,et al.  A two-step, fourth-order method with energy preserving properties , 2011, Comput. Phys. Commun..

[23]  Donato Trigiante,et al.  Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2012, SIAM J. Numer. Anal..

[24]  P. Pedregal,et al.  On a variational approach for the analysis and numerical simulation of ODEs , 2012 .

[25]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[26]  On Difference Schemes and Symplectic Geometry ? X1 Introductory Remarks , 2022 .

[27]  L. Brugnano,et al.  A Two Step, Fourth Order, Nearly-linear Method with Energy Preserving Properties * , 2022 .