Deletion Codes in the High-Noise and High-Rate Regimes

The noise model of deletions poses significant challenges in coding theory, with basic questions like the capacity of the binary deletion channel still being open. In this paper, we study the harder model of <italic>worst case</italic> deletions, with a focus on constructing efficiently decodable codes for the two extreme regimes of high-noise and high-rate. Specifically, we construct polynomial-time decodable codes with the following tradeoffs (for any <inline-formula> <tex-math notation="LaTeX">$ \varepsilon > 0$ </tex-math></inline-formula>): 1) codes that can correct a fraction <inline-formula> <tex-math notation="LaTeX">$1- \varepsilon $ </tex-math></inline-formula> of deletions with rate <inline-formula> <tex-math notation="LaTeX">$ \mathop {\mathrm {poly}}\nolimits ( \varepsilon )$ </tex-math></inline-formula> over an alphabet of size <inline-formula> <tex-math notation="LaTeX">$ \mathop {\mathrm {poly}}\nolimits (1/ \varepsilon )$ </tex-math></inline-formula>; 2) binary codes of rate <inline-formula> <tex-math notation="LaTeX">$1-\tilde {O}(\sqrt { \varepsilon })$ </tex-math></inline-formula> that can correct a fraction <inline-formula> <tex-math notation="LaTeX">$ \varepsilon $ </tex-math></inline-formula> of deletions; and 3) Binary codes that can be <italic>list-decoded</italic> from a fraction <inline-formula> <tex-math notation="LaTeX">$(1/2- \varepsilon )$ </tex-math></inline-formula> of deletions with rate <inline-formula> <tex-math notation="LaTeX">$ \mathop {\mathrm {poly}}\nolimits ( \varepsilon )$ </tex-math></inline-formula>. This paper gives the first efficient constructions which meet the qualitative goals of correcting a deletion fraction approaching 1 over bounded alphabets, and correcting a constant fraction of bit deletions with rate approaching 1 over a fixed alphabet. The above-mentioned results bring our understanding of deletion code constructions in these regimes to a similar level as worst case errors.

[1]  Michael Mitzenmacher,et al.  A Simple Lower Bound for the Capacity of the Deletion Channel , 2006, IEEE Transactions on Information Theory.

[2]  David Zuckerman,et al.  Asymptotically good codes correcting insertions, deletions, and transpositions , 1997, SODA '97.

[3]  Suhas N. Diggavi,et al.  On information transmission over a finite buffer channel , 2000, IEEE Transactions on Information Theory.

[4]  Michael Mitzenmacher,et al.  On the zero-error capacity threshold for deletion channels , 2011, 2011 Information Theory and Applications Workshop.

[5]  Eitan Yaakobi,et al.  Generalized Sphere Packing Bound , 2014, IEEE Transactions on Information Theory.

[6]  V. I. Levenshtein,et al.  Bounds for deletion/insertion correcting codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[7]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[8]  M. Mitzenmacher,et al.  Concatenated codes for deletion channels , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[9]  Venkatesan Guruswami,et al.  Efficient Low-Redundancy Codes for Correcting Multiple Deletions , 2015, IEEE Transactions on Information Theory.

[10]  Michael Mitzenmacher,et al.  A Survey of Results for Deletion Channels and Related Synchronization Channels , 2008, SWAT.

[11]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[12]  Edward A. Ratzer Marker codes for channels with insertions and deletions , 2005, Ann. des Télécommunications.

[13]  Daniel Cullina,et al.  Restricted Composition Deletion Correcting Codes , 2016, IEEE Transactions on Information Theory.

[14]  Noga Alon,et al.  Linear time erasure codes with nearly optimal recovery , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[15]  Venkatesan Guruswami,et al.  Guest column: error-correcting codes and expander graphs , 2004, SIGA.

[16]  David J. C. MacKay,et al.  Reliable communication over channels with insertions, deletions, and substitutions , 2001, IEEE Trans. Inf. Theory.

[17]  Ankur A. Kulkarni,et al.  Nonasymptotic Upper Bounds for Deletion Correcting Codes , 2012, IEEE Transactions on Information Theory.

[18]  Venkatesan Guruswami,et al.  Linear-time encodable/decodable codes with near-optimal rate , 2005, IEEE Transactions on Information Theory.

[19]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[20]  R. Gallager SEQUENTIAL DECODING FOR BINARY CHANNELS WITH NOISE AND SYNCHRONIZATION ERRORS , 1961 .

[21]  Adam Tauman Kalai,et al.  Tight asymptotic bounds for the deletion channel with small deletion probabilities , 2010, 2010 IEEE International Symposium on Information Theory.

[22]  Yashodhan Kanoria,et al.  Optimal Coding for the Binary Deletion Channel With Small Deletion Probability , 2013, IEEE Transactions on Information Theory.

[23]  Venkatesan Guruswami,et al.  Efficiently decodable insertion/deletion codes for high-noise and high-rate regimes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[24]  Jirí Matousek,et al.  Expected Length of the Longest Common Subsequence for Large Alphabets , 2003, LATIN.

[25]  Venkatesan Guruswami,et al.  Soft Decoding, Dual BCH Codes, and Better List-Decodable e-Biased Codes , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[26]  Venkatesan Guruswami,et al.  An Improved Bound on the Fraction of Correctable Deletions , 2015, IEEE Transactions on Information Theory.

[27]  Venkatesan Guruswami,et al.  Deletion Codes in the High-noise and High-rate Regimes , 2015, APPROX-RANDOM.

[28]  N.J.A. Sloane,et al.  On Single-Deletion-Correcting Codes , 2002, math/0207197.

[29]  Kenneth W. Shum,et al.  A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.