Virtual Evaluation for Machine Tool Design

This paper presents the virtual machine tool environment Mori Seiki established for the evaluation of static, dynamic, and thermal performance of Mori Seiki machine tools. In this system environment, machining accuracy and quality are the main focus for each individual analysis discipline. The structural analysis uses the Finite Element Method (FEM) to monitor and optimize the static rigidity of the machine tool. Correlation between physical experiments and digital simulation is conducted to validate and optimize the static simulation accuracy. To accurately evaluate and effectively optimize dynamic performance of the machine tool in the virtual environment, the critical modal parameters such as damping and stiffness are calibrated based on experimental procedures which results in precise setup of the frequency response models. Computational Fluid Dynamic (CFD) analysis model is built in the environment so that the thermal perspective of the machine tool is evaluated and thermal deformation is monitored. This paper demonstrates compatibility of the digital simulation with physical experiments and success in integrating theoretical simulation processes with practical Mori Seiki machine tool development.Copyright © 2008 by ASME