Microscopic Model of Metastable Changes in Hydrogenated Amorphous Silicon

Concepts based on the two-level system of structural excitations have not accounted satisfactorily for many metastable changes in hydrogenated amorphous silicon. Defects created at higher temperatures are more difficult to anneal out. Photoluminescence decreases much more after irradiation at 77 K than it does after irradiation at 300 K. After rapid cooling from 483 K, the spin signal grows with time at room temperature, etc. A microscopic explanation of these and other phenomena is given in terms of a three-level system of structural excitations: initial state, weak SiSi bond; intermediate metastable state, SiHSi bond; final metastable state, SiH and Si dangling bond. Konzepte, die auf dem Zwei-Niveau-System der strukturellen Anregungen beruhen, geben keine befriedigende Erklarung fur viele metastabile Zustande in hydrogenisiertem amorphem Silizium. Defekte, die bei hoheren Temperaturen erzeugt werden, sind schwieriger auszuheilen. Die Photolumineszenz nimmt viel starker nach Bestrahlung bei 77 K als nach Bestrahlung bei 300 K ab. Nach schneller Abkuhlung von 483 K wachst das Spinsignal mit der Zeit bei Zimmertemperatur; usw. Eine mikroskopische Erklarung dieser und anderer Pahnomene wird mit einem Drei-Niveau-System der strukturellen Anregungen gegeben: Anfangszustand, schwache SiSi-Bindung; metastabiler Zwischenzustand, SiHSi-Bindung; metastabiler Endzustand, SiH- und Si-dangling bond.

[1]  K. Morigaki Microscopic Mechanism for the Photo-Creation of Dangling Bonds in a-Si:H , 1988 .

[2]  M. Kumeda,et al.  Dependence of the photoluminescence fatigue on the illumination temperature for a-Si :H , 1987 .

[3]  Taylor,et al.  Metastable paramagnetism in hydrogenated amorphous silicon: Evidence for a new class of defects in tetrahedrally bonded amorphous semiconductors. , 1987, Physical review. B, Condensed matter.

[4]  K. Morigaki,et al.  Electron-nuclear double resonance of dangling-bond centres associated with hydrogen incorporation in aSi:H , 1987 .

[5]  Tatsuo Shimizu,et al.  Light-Induced Effects and Their Annealing Behavior in a-Si:H , 1986 .

[6]  E. Eser Light‐induced degradation and thermal recovery of the photoconductivity in hydrogenated amorphous silicon films , 1986 .

[7]  I. Shimizu,et al.  Microscopic model of the staebler-wronski effect , 1985 .

[8]  Tsai,et al.  Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. , 1985, Physical review. B, Condensed matter.

[9]  S. Hudgens,et al.  Annealing behavior of light‐induced defects in hydrogenated amorphous silicon alloys , 1984 .

[10]  H. Fritzsche,et al.  Study of light-induced creation of defects in a-Si:H by means of single and dual-beam photoconductivity , 1983 .

[11]  Y. Nannichi,et al.  Photo-Annealing of Fatigue in Photoluminescence of Hydrogenated Amorphous Silicon , 1982 .

[12]  D. Licciardello,et al.  Negative-UStates in the Gap in Hydrogenated Amorphous Silicon , 1978 .

[13]  D. E. Carlson,et al.  A SIMS analysis of deuterium diffusion in hydrogenated amorphous silicon , 1978 .

[14]  D. Hamann,et al.  Hydrogen Chemisorption on Si: A New Type of Chemisorptive Bond , 1977 .

[15]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .