Kernel Basis Pursuit

Estimating a non-uniformly sampled function from a set of learning points is a classical regression problem. Kernel methods have been widely used in this context, but every problem leads to two major tasks: optimizing the kernel and setting the fitness-regularization compromise. This article presents a new method to estimate a function from noisy learning points in the context of RKHS (Reproducing Kernel Hilbert Space). We introduce the Kernel Basis Pursuit algorithm, which enables us to build a l1-regularized-multiple-kernel estimator. The general idea is to decompose the function to learn on a sparse-optimal set of spanning functions. Our implementation relies on the Least Absolute Shrinkage and Selection Operator (LASSO) formulation and on the Least Angle Regression (LARS) solver. The computation of the full regularization path, through the LARS, will enable us to propose new adaptive criteria to find an optimal fitness-regularization compromise. Finally, we aim at proposing a fast parameter-free method to estimate non-uniform-sampled functions.

[1]  Pascal Vincent,et al.  Kernel Matching Pursuit , 2002, Machine Learning.

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[4]  S. Mallat A wavelet tour of signal processing , 1998 .

[5]  Yves Grandvalet Least Absolute Shrinkage is Equivalent to Quadratic Penalization , 1998 .

[6]  Alex Smola,et al.  Une boîte à outils rapide et simple pour les SVM , 2004 .

[7]  Ming-Wei Chang,et al.  Leave-One-Out Bounds for Support Vector Regression Model Selection , 2005, Neural Computation.

[8]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[9]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[10]  Jinbo Bi,et al.  Dimensionality Reduction via Sparse Support Vector Machines , 2003, J. Mach. Learn. Res..

[11]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[12]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[13]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[14]  D. Donoho,et al.  Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[15]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[16]  G. Wahba Spline models for observational data , 1990 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Michael I. Jordan,et al.  Computing regularization paths for learning multiple kernels , 2004, NIPS.

[19]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[20]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.