Theory of Modern Electronic Semiconductor Devices

PREFACE. 1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS. 1.1 Moore's Law and Its Implications. 1.2 Semiconductor Devices for Telecommunications. 1.3 Digital Communications. 2 SEMICONDUCTOR HETEROSTRUCTURES. 2.1 Formation of Heterostructures. 2.2 Modulation Doping. 2.3 Two-Dimensional Subband Transport at Heterointerfaces. 2.4 Strain and Stress at Heterointerfaces. 2.5 Perpendicular Transport in Heterostructures and Superlattices. 2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties. Problems. 3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS. 3.1 Motivation. 3.2 Basics of Heterostructure Field-Effect Transistors. 3.3 Simplified Long-Channel Model of a MODFET. 3.4 Physical Features of Advanced State-of-the-Art MODFETs. 3.5 High-Frequency Performance of MODFETs. 3.6 Materials Properties and Structure Optimization for HFETs. Problems. 4 HETEROSTRUCTURE BIPOLAR TRANSISTORS. 4.1 Review of Bipolar Junction Transistors. 4.2 Emitter-Base Heterojunction Bipolar Transistors. 4.3 Base Transport Dynamics. 4.4 Nonstationary Transport Effects and Breakdown. 4.5 High-Frequency Performance of HBTs. 4.6 Materials Properties and Structure Optimization for HBTs . Problems. 5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND DEVICES. 5.1 Introduction. 5.2 k-Space Transfer. 5.3 Real-Space Transfer. 5.4 Consequences of NDR in a Semiconductor. 5.5 Transferred Electron-Effect Oscillators: Gunn Diodes. 5.6 Negative Differential Resistance Transistors. 5.7 IMPATT Diodes. Problems. 6 RESONANT TUNNELING AND DEVICES. 6.1 Physics of Resonant Tunneling: Qualitative Approach. 6.2 Physics of Resonant Tunneling: Envelope Approximation. 6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction. 6.4 Resonant Tunneling Diodes: High-Frequency Applications. 6.5 Resonant Tunneling Diodes: Digital Applications. 6.6 Resonant Tunneling Transistors. Problems. 7 CMOS: DEVICES AND FUTURE CHALLENGES. 7.1 Why CMOS? 7.2 Basics of Long-Channel MOSFET Operation. 7.3 Short-Channel Effects. 7.4 Scaling Theory. 7.5 Processing Limitations to Continued Miniaturization. Problems. 8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE. 8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe. 8.2 Quantum-Dot Devices and Cellular Automata. 8.3 Molecular Computing. 8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing. 8.5 Coulomb Blockade and Single-Electron Transistors. 8.6 Quantum Computing. Problems. 9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS. 9.1 Landau Levels. 9.2 Classical Hall Effect. 9.3 Integer Quantum Hall Effect. 9.4 Fractional Quantum Hall Effect. 9.5 Shubnikov-de Haas Oscillations. Problems. REFERENCES. APPENDIX A: PHYSICAL CONSTANTS. APPENDIX B: BULK MATERIAL PARAMETERS. Table I: Silicon. Table II: Ge. Table III: GaAs. Table IV: InP. Table V: InAs. Table VI: InN. Table VII: GaN. Table VIII: SiC. Table IX: ZnS. Table X: ZnSe. Table XI : Al x Ga 1 fx As. Table XI I : Ga 0:47 In 0:53 As. Table XIII: Al 0:48 In 0:52 As. Table XI V: Ga 0:5 In 0:5 P. Table XV: Hg 0:70 Cd 0:30 Te. APPENDIX C: HETEROJUNCTION PROPERTIES. INDEX.

[1]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[2]  W. Fichtner,et al.  MOS modelling by analytical approximations. I. Subthreshold current and threshold voltage , 1979 .

[3]  E. Yu,et al.  Correlation between atomic-scale structure and mobility anisotropy in superlattices , 1998 .

[4]  S. Veeraraghavan,et al.  Short-channel effects in SOI MOSFETs , 1989 .

[5]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[6]  Pinaki Mazumder,et al.  Tunneling devices and applications in high functionality/speed digital circuits , 1997 .

[7]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[8]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[9]  K. Brennan,et al.  A potentially low-noise avalanche diode microwave amplifier , 1987, IEEE Transactions on Electron Devices.

[10]  Mau-Chung Frank Chang,et al.  Growth and doping of GaAsSb via metalorganic chemical vapor deposition for InP heterojunction bipolar transistors , 1996 .

[11]  A. Shimony The Reality of the Quantum World. , 1988 .

[12]  Kevin F. Brennan,et al.  The effect of strain-induced polarization fields on impact ionization in a multiquantum-well structure , 1998 .

[13]  K. West,et al.  Composite fermions at different levels , 1998 .

[14]  William E. Stanchina,et al.  Indium phosphide ICs unleash the high-frequency spectrum , 2000 .

[15]  P. J. Price Two‐dimensional electron transport in semiconductor layers II: Screening , 1981 .

[16]  G. Döhler,et al.  Hopping conduction in a "superlattice" , 1975 .

[17]  J. C. Love,et al.  Architectures for Molecular Electronic Computers , 2002 .

[18]  April Brown,et al.  Modification of quantum dot properties via surface exchange and annealing: Substrate temperature effects , 1998 .

[19]  S. Luryi,et al.  Novel real-space hot-electron transfer devices , 1983, IEEE Electron Device Letters.

[20]  Kris Kempa,et al.  Spontaneous polarization of electrons in quantum dashes , 1991 .

[21]  M. Tomizawa,et al.  Accurate modeling of AlGaAs/GaAs heterostructure bipolar transistors by two-dimensional computer simulation , 1984, IEEE Transactions on Electron Devices.

[22]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[23]  B. Hoefflinger,et al.  A parametric short-channel MOS transistor model for subthreshold and strong inversion current , 1984, IEEE Transactions on Electron Devices.

[24]  S. Datta,et al.  Quantum Electron Devices , 1990 .

[25]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[26]  S. Datta,et al.  Monte Carlo evaluation of electron transport in heterojunction bipolar transistor base structures , 1986, IEEE Transactions on Electron Devices.

[27]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[28]  A. Steane Quantum Computing , 1997, quant-ph/9708022.

[29]  R. W. Kelsall,et al.  The Monte Carlo method for semiconductor device simulation , 1995 .

[30]  K. Brennan,et al.  Theoretical comparison of electron real‐space transfer in classical and quantum two‐dimensional heterostructure systems , 1989 .

[31]  Karl Hess,et al.  Negative differential resistance through real‐space electron transfer , 1979 .

[32]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[33]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[34]  P. R. Smith,et al.  Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic , 1989 .

[35]  M. E. Hines,et al.  Electronic tuning effects in the read microwave avalanche diode , 1966 .

[36]  T. Gaylord,et al.  Electron wave optics in semiconductors , 1989 .

[37]  D.L. Critchlow,et al.  Mosfet Scaling-the Driver of VLSI Technology , 1999, Proceedings of the IEEE.

[38]  K. Brennan,et al.  Invited Review: Superlattice and multiquantum well avalanche photodetectors: physics, concepts and performance , 2000 .

[39]  Kawamura,et al.  Phonon-scattering-limited electron mobilities in AlxGa1-xAs/GaAs heterojunctions. , 1992, Physical review. B, Condensed matter.

[40]  A. Shepherd,et al.  Semiconductors , 1967, Nature.

[41]  Pinaki Mazumder,et al.  Digital circuit applications of resonant tunneling devices , 1998, Proc. IEEE.

[42]  Kevin F. Brennan,et al.  Theoretical analysis of an Al/sub 0.15/Ga/sub 0.85/As/In/sub 0.15/Ga/sub 0.85/As pseudomorphic HEMT using an ensemble Monte Carlo simulation , 1989 .

[43]  R. C. Potter,et al.  Three-dimensional integration of resonant tunneling structures for signal processing and three-state logic , 1988 .

[44]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[45]  Kazuo Yano,et al.  Room-temperature single-electron memory , 1994 .

[46]  Eliana Tapuhi,et al.  Molecular Electronics: A New Interdisciplinary Field of Research , 1991 .

[47]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[48]  S. Tiwari Compound semiconductor device physics , 1992 .

[49]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[50]  A. Gutierrez-Aitken,et al.  Double heterojunction bipolar transistors with InP epitaxial layers grown by solid-source MBE , 1997, Conference Proceedings. 1997 International Conference on Indium Phosphide and Related Materials.

[51]  N. S. Barnett,et al.  Private communication , 1969 .

[52]  Bo Monemar,et al.  Group III-nitride based hetero and quantum structures , 2000 .

[53]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[54]  Enrico Sangiorgi,et al.  Scaling the MOS transistor below 0.1 /spl mu/m: methodology, device structures, and technology requirements , 1994 .

[55]  A. Duncan,et al.  Full-band Monte Carlo investigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors , 1998 .

[56]  Kevin F. Brennan,et al.  Monte Carlo simulation of 0.35- mu m gate-length GaAs and InGaAs HEMTs , 1990 .

[57]  G. Baccarani,et al.  IIA-1 generalized scaling theory and its application to a 1/4 micron mosfet design , 1982, IEEE Transactions on Electron Devices.

[58]  Karl Hess,et al.  High field transport in GaAs, InP and InAs , 1984 .

[59]  K. Brennan,et al.  Hydrodynamic Simulation of Semiconductor Devices , 1997 .

[60]  Douglas J. Paul,et al.  Silicon germanium heterostructures in electronics: the present and the future , 1998 .

[61]  Joan M. Redwing,et al.  Piezoelectric charge densities in AlGaN/GaN HFETs , 1997 .

[62]  K. Brennan,et al.  Transient electronic transport in staircase heterostructures , 1983, IEEE Electron Device Letters.

[63]  Supriyo Bandyopadhyay,et al.  Supercomputing with spin-polarized single electrons in a quantum coupled architecture , 1994 .

[64]  Lester F. Eastman,et al.  Mobility of electrons in bulk GaN and Al x Ga 1-x N/GaN heterostructures , 2000 .

[65]  William Liu,et al.  Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs , 1999 .

[66]  N. Yokoyama,et al.  Resonant tunneling hot‐electron transistor with current gain of 5 , 1986 .

[67]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[68]  Lee,et al.  Effect of inelastic processes on resonant tunneling in one dimension. , 1985, Physical review letters.

[69]  M. Kastner,et al.  The single-electron transistor , 1992 .

[70]  Strain‐induced two‐dimensional electron gas in [111] growth‐axis strained‐layer structures , 1990 .

[71]  D. Pavlidis Reliability characteristics of GaAs and InP-based heterojunction bipolar transistors ☆ , 1999 .

[72]  H. Ahmed,et al.  A high-speed silicon single-electron random access memory , 1999, IEEE Electron Device Letters.

[73]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[74]  Bernard S. Meyerson,et al.  High electron mobility in modulation‐doped Si/SiGe , 1991 .

[75]  The Fractional Quantum Hall Effect , 1990, Science.

[76]  K. Brennan,et al.  Transient electronic transport in InP under the condition of high-energy electron injection , 1983, IEEE Transactions on Electron Devices.

[77]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[78]  W. T. Read,et al.  A proposed high-frequency, negative-resistance diode , 1958 .

[79]  T. Gaylord,et al.  Semiconductor superlattice electron wave interference filters , 1988 .

[80]  Krieger,et al.  Time evolution of Bloch electrons in a homogeneous electric field. , 1986, Physical review. B, Condensed matter.

[81]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[82]  Lawrence E. Larson,et al.  Ultra-high speed modulation-doped field-effect transistors: a tutorial review , 1992, Proc. IEEE.

[83]  A. Gossard,et al.  Resistance standard using quantization of the Hall resistance of GaAs‐AlxGa1−xAs heterostructures , 1981 .

[84]  Michael S. Shur,et al.  The influence of the strain‐induced electric field on the charge distribution in GaN‐AlN‐GaN structure , 1993 .

[85]  L. D. Yau,et al.  A simple theory to predict the threshold voltage of short-channel IGFET's , 1974 .

[86]  Lawrence E. Larson,et al.  Integrated circuit technology options for RFIC's-present status and future directions , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[87]  Karl Hess,et al.  Nonlinear electronic transport and device performance of HEMTs , 2001 .

[88]  Bahaa E. A. Saleh,et al.  Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes , 1986 .

[89]  M. H. Somerville,et al.  Breakdown in millimeter-wave power InP HEMTs: a comparison with GaAs PHEMT's , 1999, IEEE J. Solid State Circuits.

[90]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[91]  April Brown,et al.  50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors , 1992 .

[92]  W. Frensley,et al.  Wigner-function model of a resonant-tunneling semiconductor device. , 1987, Physical review. B, Condensed matter.

[93]  Kazuo Nakazato,et al.  Single-electron memory , 1993 .

[94]  Serge Luryi,et al.  Frequency limit of double‐barrier resonant‐tunneling oscillators , 1985 .

[95]  D. Tsui,et al.  The Quantized Hall Effect , 1983, Science.

[96]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[97]  Kevin F. Brennan,et al.  The Physics of Semiconductors: With Applications to Optoelectronic Devices , 1999 .

[98]  Ferry,et al.  Self-consistent study of the resonant-tunneling diode. , 1989, Physical review. B, Condensed matter.

[99]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[100]  S. Stock,et al.  Characterization of AlGaN/GaN structures on various substrates grown by radio frequency-plasma assisted molecular beam epitaxy , 2001 .

[101]  Federico Capasso,et al.  Quantum well resonant tunneling bipolar transistor operating at room temperature , 1986 .

[102]  T. B. Watkins,et al.  The Possibility of Negative Resistance Effects in Semiconductors , 1961 .

[103]  J.D. Meindl Ultra-large scale integration , 1984, IEEE Transactions on Electron Devices.

[104]  T. Misawa,et al.  Negative resistance in p-n junctions under avalanche breakdown conditions, part II , 1966 .

[105]  S. Laux,et al.  Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K , 1988, IEEE Electron Device Letters.

[106]  P. Dobson,et al.  Physical Properties of Crystals – Their Representation by Tensors and Matrices , 1985 .

[107]  Issues in general quantum transport with complex potentials , 1999 .

[108]  Quantum Computing with Molecules By taking advantage of nuclear magnetic resonance, scientists can coax the molecules in some ordinary liquids to serve as an extraordinary type of computer , 1998 .

[109]  George I. Haddad,et al.  Basic Principles and Properties of Avalanche Transit-Time Devices , 1970 .

[110]  M. Vaidyanathan,et al.  Extrapolated f/sub max/ of heterojunction bipolar transistors , 1999 .

[111]  C. Hilsum,et al.  Transferred electron amplifiers and oscillators , 1962, IRE Transactions on Electron Devices.

[112]  K. Hess,et al.  Investigation of transient electronic transport in GaAs following high energy injection , 1982, IEEE Transactions on Electron Devices.

[113]  Mike Golio Low Voltage/Low Power Microwave Electronics , 2000, 2000 30th European Microwave Conference.

[114]  Calculation of phonon‐assisted tunneling between two quantum wells , 1986 .

[115]  K. Brennan,et al.  A theory of enhanced impact ionization due to the gate field and mobility degradation in the inversion layer of MOSFET's , 1986, IEEE Electron Device Letters.

[116]  J. Raimond,et al.  Quantum Computing: Dream or Nightmare? , 1996 .

[117]  M. Stroscio,et al.  Polar optical-phonon scattering in three- and two-dimensional electron gases , 1995 .

[118]  C. Sah,et al.  Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors☆ , 1966 .

[119]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[120]  M. Conrad The lure of molecular computing: While marketable products seem decades away, researchers are crystallizing theories and devices that will give biological organisms the power to compute , 1986, IEEE Spectrum.

[121]  Tsui,et al.  Observation of an even-denominator quantum number in the fractional quantum Hall effect. , 1987, Physical review letters.

[122]  Bernard S. Meyerson,et al.  Electron transport properties of Si/SiGe heterostructures: Measurements and device implications , 1993 .

[123]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[124]  C. Pai,et al.  Interconnect technology trend for microelectronics , 1999 .

[125]  Federico Capasso,et al.  Sequential resonant tunneling through a multiquantum well superlattice , 1986 .

[126]  G. B. Stringfellow,et al.  Monte Carlo calculation of velocity‐field characteristics in GaInAs/InP and GaInAs/AlInAs single‐well heterostructures , 1987 .

[127]  R. Willett Experimental evidence for composite fermions , 1997 .

[128]  S. Asai,et al.  Technology challenges for integration near and below 0.1 μm , 1997, Proc. IEEE.

[129]  A. Chomette,et al.  Hopping conduction in multiquantum well structures , 1984 .

[130]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[131]  James S. Speck,et al.  POLARIZATION-INDUCED CHARGE AND ELECTRON MOBILITY IN ALGAN/GAN HETEROSTRUCTURES GROWN BY PLASMA-ASSISTED MOLECULAR-BEAM EPITAXY , 1999 .

[132]  Yokoyama,et al.  Monte Carlo study of electronic transport in Al1-xGaxAs/GaAs single-well heterostructures. , 1986, Physical review. B, Condensed matter.

[133]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[134]  T. Ishibashi,et al.  Monte Carlo analysis of the space-charge effect in AlGaAs/GaAs ballistic collection transistors (BCTs) under high current injection , 1992 .

[135]  J. G. Ruch,et al.  Electron dynamics in short channel field-effect transistors , 1972 .

[136]  F. Capasso,et al.  Quantum transistors and circuits break through the barriers , 1991, IEEE Circuits and Devices Magazine.

[137]  Michael S. Shur,et al.  Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices , 1997 .

[138]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[139]  M. Lundstrom,et al.  A proposed structure for collector transit-time reduction in AlGaAs/GaAs bipolar transistors , 1986, IEEE Electron Device Letters.

[140]  Darryl L. Smith,et al.  Field Effect Transistor Structure Based on Strain Induced Polarization Charges , 1989 .

[141]  K. Brennan,et al.  Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe , 1991 .