The vanishing viscosity limit for some symmetric flows

The focus of this paper is on the analysis of the boundary layer and the associated vanishing viscosity limit for two classes of flows with symmetry, namely, Plane-Parallel Channel Flows and Parallel Pipe Flows. We construct explicit boundary layer correctors, which approximate the difference between the Navier-Stokes and the Euler solutions. Using properties of these correctors, we establish convergence of the Navier-Stokes solution to the Euler solution as viscosity vanishes with optimal rates of convergence. In addition, we investigate vorticity production on the boundary in the limit of vanishing viscosity. Our work significantly extends prior work in the literature.

[1]  Vlad Vicol,et al.  Remarks on the Inviscid Limit for the Navier-Stokes Equations for Uniformly Bounded Velocity Fields , 2015, SIAM J. Math. Anal..

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  D. Iftimie,et al.  Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions , 2006 .

[4]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[5]  Hamid Bellout,et al.  On the Navier‐Stokes equation with boundary conditions based on vorticity , 2004 .

[6]  Xiaoming Wang,et al.  A Kato type theorem on zero viscosity limit of Navier-Stokes flows , 2001 .

[7]  A. Mazzucato,et al.  Vanishing Viscosity Limits for a Class of Circular Pipe Flows , 2010 .

[8]  James P. Kelliher,et al.  Observations on the vanishing viscosity limit , 2014, 1409.7716.

[9]  Tosio Kato,et al.  Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary , 1984 .

[10]  Emil Wiedemann,et al.  Onsager’s Conjecture with Physical Boundaries and an Application to the Vanishing Viscosity Limit , 2018, Communications in Mathematical Physics.

[11]  J. Lions Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .

[12]  K. Asano A note on the abstract Cauchy-Kowalewski theorem , 1988 .

[13]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[14]  Michael Taylor,et al.  Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows , 2007, 0709.2056.

[15]  M. Vishik Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II , 2018, 1805.09426.

[16]  Franck Sueur,et al.  Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions , 2011 .

[17]  James P Kelliher,et al.  On the vanishing viscosity limit in a disk , 2006, math-ph/0612027.

[18]  Yan Guo,et al.  Spectral instability of characteristic boundary layer flows , 2014, 1406.3862.

[19]  Marco Cannone,et al.  Well-Posedness of the Boundary Layer Equations , 2003, SIAM J. Math. Anal..

[20]  B. Morton,et al.  The generation and decay of vorticity , 1984 .

[21]  H. B. Veiga,et al.  A missed persistence property for the Euler equations and its effect on inviscid limits , 2010, 1011.1117.

[22]  F. Gargano,et al.  Singularity formation for Prandtl’s equations , 2009, 1310.6622.

[23]  Roger Temam,et al.  Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary , 2012, Networks Heterog. Media.

[24]  Nader Masmoudi,et al.  Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition , 2010, 1008.1678.

[25]  Toàn Nguyên,et al.  Remarks on the ill-posedness of the Prandtl equation , 2009, Asymptot. Anal..

[26]  Toan T. Nguyen,et al.  Spectral instability of general symmetric shear flows in a two-dimensional channel , 2016 .

[27]  Chang-Yeol Jung,et al.  Vorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition , 2013, Asymptot. Anal..

[28]  Nader Masmoudi,et al.  Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case , 2015, Memoirs of the American Mathematical Society.

[29]  Huy Q. Nguyen,et al.  Onsager's Conjecture and Anomalous Dissipation on Domains with Boundary , 2018, SIAM J. Math. Anal..

[30]  N. Masmoudi,et al.  Gevrey stability of Prandtl expansions for 2-dimensional Navier–Stokes flows , 2016, Duke Mathematical Journal.

[31]  C. Bardos,et al.  Existence et unicité de la solution de l'équation d'Euler en dimension deux , 1972 .

[32]  James P. Kelliher,et al.  Vanishing viscosity and the accumulation of vorticity on the boundary , 2008, 0805.2402.

[33]  A. Mazzucato,et al.  Boundary layer associated with a class of 3D nonlinear plane parallel channel flows , 2011 .

[34]  Ravi P. Agarwal,et al.  The One-Dimensional Heat Equation , 2009 .

[35]  R. Temam,et al.  Boundary Layers Associated with Incompressible Navier–Stokes Equations: The Noncharacteristic Boundary Case , 2002 .

[36]  E Weinan,et al.  BLOWUP OF SOLUTIONS OF THE UNSTEADY PRANDTL'S EQUATION , 1997 .

[37]  Shin’ya Matsui,et al.  Example of zero viscosity limit for two dimensional nonstationary Navier-Stokes flows with boundary , 1991 .

[38]  R. Temam,et al.  SINGULAR PERTURBATION ANALYSIS ON A HOMOGENEOUS OCEAN CIRCULATION MODEL , 2011 .

[39]  H. Schlichting Boundary Layer Theory , 1955 .

[40]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[41]  Eitan Tadmor,et al.  Approximate solutions of the incompressible Euler equations with no concentrations , 2000 .

[42]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .

[43]  Anna L. Mazzucato,et al.  Vanishing viscosity plane parallel channel flow and related singular perturbation problems , 2008 .

[44]  V. N. Samokhin,et al.  Mathematical Models in Boundary Layer Theory , 1999 .

[45]  Emil Wiedemann,et al.  Vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow , 2012, 1208.2352.

[46]  Hantaek Bae Navier-Stokes equations , 1992 .

[47]  R. Temam Navier-Stokes Equations , 1977 .

[48]  A Navier–Stokes Approximation of the 3D Euler Equation with the Zero Flux on the Boundary , 2008 .

[49]  Gung-Min Gie,et al.  Asymptotic expansion of the stokes solutions at small viscosity: The case of non-compatible initial data , 2014 .

[50]  Daozhi Han,et al.  Boundary Layer for a Class of Nonlinear Pipe Flow , 2012 .

[51]  H. Beirão da Veiga,et al.  Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory , 2010 .

[52]  James P. Kelliher Navier-Stokes Equations with Navier Boundary Conditions for a Bounded Domain in the Plane , 2006, SIAM J. Math. Anal..

[53]  Nader Masmoudi,et al.  Asymptotic stability for the Couette flow in the 2D Euler equations , 2013, 1309.2035.

[54]  Emmanuel Grenier,et al.  On the nonlinear instability of Euler and Prandtl equations , 2000 .

[55]  O. Oleinik,et al.  On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid , 1966 .

[56]  Igor Kukavica,et al.  On the Local Well-posedness of the Prandtl and Hydrostatic Euler Equations with Multiple Monotonicity Regions , 2014, SIAM J. Math. Anal..

[57]  Yan Guo,et al.  A note on Prandtl boundary layers , 2010, 1011.0130.

[58]  Yasunori Maekawa,et al.  On the Inviscid Limit Problem of the Vorticity Equations for Viscous Incompressible Flows in the Half‐Plane , 2012 .

[59]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[60]  Helena J. Nussenzveig Lopes,et al.  On the Inviscid Limit for Two-Dimensional Incompressible Flow with Navier Friction Condition , 2005, SIAM J. Math. Anal..

[61]  Emmanuel Dormy,et al.  On the ill-posedness of the Prandtl equation , 2009, 0904.0434.

[62]  Yan Guo,et al.  Spectral stability of Prandtl boundary layers: An overview , 2014, 1406.4452.

[63]  Roger Temam,et al.  On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity , 1997 .

[64]  Andro Mikelić,et al.  On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions , 1998 .

[65]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[66]  Gung-Min Gie,et al.  Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions , 2011, 1105.2324.

[67]  On viscosity-continuous solutions of the Euler and Navier–Stokes equations with a Navier-type boundary condition , 2009 .

[68]  Toan T. Nguyen,et al.  Sublayer of Prandtl Boundary Layers , 2017, 1705.04672.

[69]  Marco Cannone,et al.  Well-posedness of Prandtl equations with non-compatible data , 2013 .

[70]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[71]  Edriss S. Titi,et al.  Mathematics and turbulence: where do we stand? , 2013, 1301.0273.

[72]  R. Temam,et al.  SOME SINGULAR PERTURBATION PROBLEMS RELATED TO THE NAVIER-STOKES EQUATIONS , 2007 .

[73]  Jerry L. Bona,et al.  The Zero‐Viscosity Limit of the 2D Navier–Stokes Equations , 2002 .

[74]  Edriss S. Titi,et al.  Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking , 2012, SIAM J. Math. Anal..

[75]  K. Gersten Introduction to Boundary-Layer Theory , 1998 .

[76]  H. Swann The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .

[77]  Igor Kukavica,et al.  On the local existence of analytic solutions to the Prandtl boundary layer equations , 2013 .

[78]  N. Masmoudi Remarks about the Inviscid Limit of the Navier–Stokes System , 2007 .

[79]  Roger Temam,et al.  Boundary layers in channel flow with injection and suction , 2001, Appl. Math. Lett..

[80]  Roger Temam,et al.  Boundary layers in smooth curvilinear domains: Parabolic problems , 2009 .

[81]  Camillo De Lellis,et al.  Dissipative Euler Flows with Onsager‐Critical Spatial Regularity , 2014, 1404.6915.

[82]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[83]  Z. Xin,et al.  On the vanishing viscosity limit for the 3D Navier‐Stokes equations with a slip boundary condition , 2007 .

[84]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .

[85]  Nader Masmoudi,et al.  On the stability threshold for the 3D Couette flow in Sobolev regularity , 2015, 1511.01373.