SAR image reconstruction and autofocus by compressed sensing

A new SAR signal processing technique based on compressed sensing is proposed for autofocused image reconstruction on subsampled raw SAR data. It is shown that, if the residual phase error after INS/GPS corrected platform motion is captured in the signal model, then the optimal autofocused image formation can be formulated as a sparse reconstruction problem. To further improve image quality, the total variation of the reconstruction is used as a penalty term. In order to demonstrate the performance of the proposed technique in wide-band SAR systems, the measurements used in the reconstruction are formed by a new under-sampling pattern that can be easily implemented in practice by using slower rate A/D converters. Under a variety of metrics for the reconstruction quality, it is demonstrated that, even at high under-sampling ratios, the proposed technique provides reconstruction quality comparable to that obtained by the classical techniques which require full-band data without any under-sampling.

[1]  Mujdat Cetin,et al.  Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging , 2003 .

[2]  Justin Romberg,et al.  Practical Signal Recovery from Random Projections , 2005 .

[3]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[4]  Robert A. van de Geijn,et al.  A Family of High-Performance Matrix Multiplication Algorithms , 2004, PARA.

[5]  GoldfarbDonald,et al.  Bregman Iterative Algorithms for $\ell_1$-Minimization with Applications to Compressed Sensing , 2008 .

[6]  Alexander M. Bronstein,et al.  Reconstruction in diffraction ultrasound tomography using nonuniform FFT , 2002, IEEE Transactions on Medical Imaging.

[7]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[8]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[9]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[10]  Bernie Mulgrew,et al.  Compressed sensing based compression of SAR raw data , 2009 .

[11]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[12]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[13]  Robert A. van de Geijn,et al.  Anatomy of high-performance matrix multiplication , 2008, TOMS.

[14]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[15]  Shunjun Wei,et al.  SPARSE RECONSTRUCTION FOR SAR IMAGING BASED ON COMPRESSED SENSING , 2010 .

[16]  Charles V. Jakowatz,et al.  Phase gradient autofocus-a robust tool for high resolution SAR phase correction , 1994 .

[17]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[18]  Müjdat Çetin,et al.  Joint sparsity-driven inversion and model error correction for radar imaging , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Bernard Mulgrew,et al.  Iterative image formation using fast (Re/Back)-projection for spotlight-mode SAR , 2011, 2011 IEEE RadarCon (RADAR).

[22]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[23]  Thomas Strohmer,et al.  Compressed sensing radar , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[25]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[26]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[27]  Guangyou Fang,et al.  UWB Through-Wall Imaging Based on Compressive Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[30]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[31]  P H Eichel,et al.  Speckle processing method for synthetic-aperture-radar phase correction. , 1989, Optics letters.

[32]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[33]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[34]  T. Blumensath,et al.  Fast Encoding of Synthetic Aperture Radar Raw Data using Compressed Sensing , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[35]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[36]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[37]  Mohammad Ali Masnadi-Shirazi,et al.  Sparse representation-based synthetic aperture radar imaging , 2011 .

[38]  Robert A. van de Geijn,et al.  A Family of High-Performance Matrix Multiplication Algorithms , 2001, International Conference on Computational Science.

[39]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B.D. Rigling Use of Nonquadratic Regularization in Fourier Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[42]  Tom Diethe,et al.  Compressed Sampling for pulse Doppler radar , 2010, 2010 IEEE Radar Conference.

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[45]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[46]  Minh N. Do,et al.  SAR Image Autofocus By Sharpness Optimization: A Theoretical Study , 2007, IEEE Transactions on Image Processing.

[47]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[48]  K. T. Block,et al.  Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint , 2007, Magnetic resonance in medicine.

[49]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[50]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[51]  Minh N. Do,et al.  MCA: A Multichannel Approach to SAR Autofocus , 2009, IEEE Transactions on Image Processing.

[52]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[53]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[54]  Li Xi,et al.  Autofocusing of ISAR images based on entropy minimization , 1999 .

[55]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[56]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[57]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[58]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[59]  Rama Chellappa,et al.  Compressed Synthetic Aperture Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[60]  C. V. Jakowatz,et al.  Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture-radar imagery , 1993 .

[61]  D. Cook Spotlight Synthetic Aperture Radar , 2012 .