Insights into cyanophage-mediated dynamics of nodularin and other non-ribosomal peptides in Nodularia spumigena.

[1]  Kristina Slavuckytė,et al.  The predation paradox: Synergistic and antagonistic interactions between grazing by crustacean predator and infection by cyanophages promotes bloom formation in filamentous cyanobacteria , 2017 .

[2]  H. Paerl Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs , 2017 .

[3]  Dedmer B. Van de Waal,et al.  Combined Effects of Elevated pCO2 and Warming Facilitate Cyanophage Infections , 2017, Front. Microbiol..

[4]  M. Rowe,et al.  Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. , 2017, Environmental science & technology.

[5]  A. Bownik Harmful algae: Effects of cyanobacterial cyclic peptides on aquatic invertebrates-a short review. , 2016, Toxicon : official journal of the International Society on Toxinology.

[6]  C. Legrand,et al.  Chemical and Genetic Diversity of Nodularia spumigena from the Baltic Sea , 2016, Marine drugs.

[7]  A. Vardi,et al.  Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean. , 2016, Trends in microbiology.

[8]  A. Poljak,et al.  Physiological and Proteomic Responses of Continuous Cultures of Microcystis aeruginosa PCC 7806 to Changes in Iron Bioavailability and Growth Rate , 2016, Applied and Environmental Microbiology.

[9]  S. Sunagawa,et al.  Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus , 2016, The ISME Journal.

[10]  M. Casini,et al.  Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors , 2016, Front. Microbiol..

[11]  C. Stow,et al.  The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. , 2016, Harmful algae.

[12]  Jinpeng Yu,et al.  Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli , 2016, Marine drugs.

[13]  G. Węgrzyn,et al.  Baltic cyanobacteria – a source of biologically active compounds , 2015 .

[14]  A. Brutemark,et al.  A Less Saline Baltic Sea Promotes Cyanobacterial Growth, Hampers Intracellular Microcystin Production, and Leads to Strain-Specific Differences in Allelopathy , 2015, PloS one.

[15]  M. Tysklind,et al.  Projected future climate change and Baltic Sea ecosystem management , 2015, AMBIO.

[16]  R. Meškys,et al.  Characterization of a lytic cyanophage that infects the bloom-forming cyanobacterium Aphanizomenon flos-aquae. , 2015, FEMS microbiology ecology.

[17]  P. Hayes,et al.  Characterisation of Host Growth after Infection with a Broad-Range Freshwater Cyanopodophage , 2014, PloS one.

[18]  P. Permi,et al.  New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena , 2013, PloS one.

[19]  M. Breitbart,et al.  A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes , 2013, BMC Evolutionary Biology.

[20]  B. Neilan,et al.  On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin , 2010, Marine drugs.

[21]  Igor M. Belkin,et al.  Rapid warming of Large Marine Ecosystems , 2009 .

[22]  Qi-ya Zhang,et al.  Isolation of a novel cyanophage infectious to the filamentous cyanobacterium Planktothrix agardhii (Cyanophyceae) from Lake Donghu, China. , 2009 .

[23]  S. Carmeli,et al.  “Non-Toxic” Cyclic Peptides Induce Lysis of Cyanobacteria—An Effective Cell Population Density Control Mechanism in Cyanobacterial Blooms , 2008, Microbial Ecology.

[24]  K. Sivonen,et al.  Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. , 2008, FEMS microbiology ecology.

[25]  F. Chen,et al.  Prevalence of highly host-specific cyanophages in the estuarine environment. , 2008, Environmental microbiology.

[26]  J. Leflaive,et al.  Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins , 2007 .

[27]  M. Viitasalo,et al.  Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin , 2006 .

[28]  Paul K. Hayes,et al.  Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium Nodularia isolated from the brackish Baltic Sea , 2006, Journal of the Marine Biological Association of the United Kingdom.

[29]  J. Fuhrman,et al.  Diversity of virus-like agents killing Microcystis aeruginosa in a hyper-eutrophic pond , 2006 .

[30]  Stefan G. H. Simis,et al.  Optical changes associated with cyanobacterial bloom termination by viral lysis , 2005 .

[31]  S. Suikkanen,et al.  Effects of cyanobacterial allelochemicals on a natural plankton community , 2005 .

[32]  P. Pollard,et al.  Identification of Cyanophage Ma-LBP and Infection of the Cyanobacterium Microcystis aeruginosa from an Australian Subtropical Lake by the Virus , 2005, Applied and Environmental Microbiology.

[33]  Jed A. Fuhrman,et al.  Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean , 2004 .

[34]  E. Granéli,et al.  Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon. , 2002, International journal of systematic and evolutionary microbiology.

[35]  J. Vaitomaa,et al.  Effects of Nutrients on Growth and Nodularin Production of Nodularia Strain GR8b , 2001, Microbial Ecology.

[36]  C. Suttle,et al.  Viruses and Nutrient Cycles in the Sea Viruses play critical roles in the structure and function of aquatic food webs , 1999 .

[37]  Z. Kawabata,et al.  Seasonal changes in densities of cyanophage infectious to Microcystis aeruginosa in a hypereutrophic pond , 1999, Hydrobiologia.

[38]  K. Kononen,et al.  Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin , 1989, Applied and environmental microbiology.

[39]  E. Roine,et al.  Newly isolated Nodularia phage influences cyanobacterial community dynamics , 2017, Environmental microbiology.

[40]  S. Abedon,et al.  Practical methods for determining phage growth parameters. , 2009, Methods in molecular biology.

[41]  R. Akçaalan,et al.  Phenotypic and toxicological characterization of toxic Nodularia spumigena from a freshwater lake in Turkey , 2009 .

[42]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .