The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin.

The rotaxane 3(E,E) serves as the basis of a light driven molecular muscle, where reversible photoisomerisation of the stilbene units causes the cyclodextrins to move off and on the stilbene units, contracting and extending the distance between the blocking groups.

[1]  S. Lincoln,et al.  Modified Cyclodextrins: Scaffolds and Templates for Supramolecular Chemistry , 1999 .

[2]  Toshio Yanagida,et al.  A single myosin head moves along an actin filament with regular steps of 5.3 nanometres , 1999, Nature.

[3]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[4]  Maria Consuelo Jimenez-Molero,et al.  Rotaxanes and catenanes as prototypes of molecular machines and motors , 2004 .

[5]  S. Lincoln,et al.  Synthesis and conformational analysis of an α-cyclodextrin [2]-rotaxane , 1999 .

[6]  Vincenzo Balzani,et al.  Artificial nanomachines based on interlocked molecular species: recent advances. , 2006, Chemical Society reviews.

[7]  Michael A. Geeves,et al.  Molecular motors: Stretching the lever-arm theory , 2002, Nature.

[8]  Hiroto Murakami,et al.  A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. , 2005, Journal of the American Chemical Society.

[9]  J. F. Stoddart,et al.  Photo-driven molecular devices. , 2007, Chemical Society reviews.

[10]  Chih-Ming Ho,et al.  A nanomechanical device based on linear molecular motors , 2004 .

[11]  George Oster,et al.  Energy transduction in ATP synthase , 1998, Nature.

[12]  Y. Sakata,et al.  The first Janus [2]rotaxane , 2000 .

[13]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[14]  Jean-Pierre Sauvage,et al.  Transition metal-complexed catenanes and rotaxanes as molecular machine prototypes. , 2005, Chemical communications.

[15]  Benoit Colasson,et al.  Towards molecular machines and motors based on transition metal complexes , 2002 .

[16]  G. Wenz Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units , 1994 .

[17]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[18]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[19]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[20]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[21]  D. Qu,et al.  A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. , 2007, Chemical communications.

[22]  Bao-hang Han,et al.  Cyclodextrin rotaxanes and polyrotaxanes. , 2006, Chemical reviews.

[23]  S. Lincoln,et al.  Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes. , 2003, Chemistry.

[24]  Y. Takashima,et al.  Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain. , 2007, Organic letters.

[25]  Roger J. Coulston,et al.  Harnessing the energy of molecular recognition in a nanomachine having a photochemical on/off switch. , 2006, Journal of the American Chemical Society.

[26]  Stoddart,et al.  Toward Daisy Chain Polymers: "Wittig Exchange" of Stoppers in , 2000, Organic letters.

[27]  G. Wenz,et al.  Supramolecular control of the photochemistry of stilbenes by cyclodextrins , 1997 .

[28]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[29]  S. Lincoln,et al.  Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. , 2003, Chemistry.

[30]  S. Lincoln,et al.  An hermaphrodite [2]rotaxane: preparation and analysis of structure. , 2001, Organic letters.

[31]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[32]  Susumu Tsuda,et al.  Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. , 2006, Chemical communications.

[33]  J. Howard,et al.  Molecular motors: structural adaptations to cellular functions , 1997, Nature.