HIGH-ACCURACY EMBEDDED BOUNDARY GRID GENERATION USING THE DIVERGENCE THEOREM

We present an algorithm to produce the necessary geometric information for finite volume calculations in the context of Cartesian grids with embedded boundaries. Given an order of accuracy for the overall calculation, we show what accuracy is required for each of the geometric quantites and we demonstrate how to calculate the moments using the divergence theorem. We demonstrate that, for a known flux, these moments can be used to create a flux divergence of the expected order.

[1]  Mark F. Adams,et al.  Chombo Software Package for AMR Applications Design Document , 2014 .

[2]  Wei Shyy,et al.  Three-dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruction , 2007, J. Comput. Phys..

[3]  Jörg Peters,et al.  Computing moments of objects enclosed by piecewise polynomial surfaces , 1998, TOGS.

[4]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[5]  Phillip Colella,et al.  A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .

[6]  P. Colella,et al.  Embedded boundary grid generation using the divergence theorem, implicit functions, and constructive solid geometry , 2008 .

[7]  Phillip Colella,et al.  Adaptive Cartesian grid methods for representing geometry in inviscid compressible flow , 1993 .

[8]  Meng-Sing Liou,et al.  Numerical prediction of interfacial instabilities: Sharp interface method (SIM) , 2008, J. Comput. Phys..

[9]  P. Colella,et al.  A Higher-Order Upwind Method for Viscoelastic Flow in Irregular Geometries , 2006 .

[10]  H. Udaykumar,et al.  Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations , 2005 .

[11]  Farrokh Najmabadi,et al.  An embedded boundary method for viscous, conducting compressible flow , 2004, J. Comput. Phys..

[12]  MarellaS.,et al.  Sharp interface Cartesian grid method III , 2005 .

[13]  David Trebotich,et al.  An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation , 2012 .

[14]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1998 .

[15]  G. Miller,et al.  AN EMBEDDED BOUNDARY METHOD FOR THE NAVIER-STOKES EQUATIONS ON A TIME-DEPENDENT DOMAIN , 2012 .

[16]  Fritz Albregtsen,et al.  Fast Computation of Three-Dimensional Geometric Moments Using a Discrete Divergence Theorem and a Generalization to Higher Dimensions , 1997, CVGIP Graph. Model. Image Process..

[17]  Phillip Colella,et al.  A cartesian grid embedded boundary method for the heat equation and poisson's equation in three dimensions , 2004 .

[18]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[19]  P. Colella,et al.  EBChombo Software Package for Cartesian Grid, Embedded Boundary Applications , 2014 .

[20]  P. Colella,et al.  A cartesian grid embedded boundary method for the compressible Navier–Stokes equations , 2013 .