Dispersal of foliar plant pathogens: mechanisms, gradients and spatial patterns

Understanding the nature and scope of the dispersal of plant pathogen propagules is fundamental to the understanding of disease epidemic development. This has been appreciated for many years, and the measurement and modelling of both plant pathogen propagule dispersal and plant disease spread has been a cornerstone of plant disease epidemiology. Work on the diffusion of spore clouds was done as early as 1918 (Schmidt, 1918). Since the classic work of Gregory (1945) there has been much progress in work on dispersal of plant pathogen spores and spread of the diseases they cause. However, there is still much to learn before we can understand and predict the spread of plant diseases in space and time.

[1]  P. Gladders,et al.  Observations on the epidemiology of Leptosphaeria macutans stem canker in winter oilseed rape , 1980 .

[2]  B. Legg,et al.  Release of barley-mildew conidia from shaken leaves , 1976 .

[3]  B. Fitt,et al.  Studies on mechanisms of splash dispersal of spores, using Pseudocercosporella herpotrichoides spores , 1984 .

[4]  John L. Monteith,et al.  Plant Response to Wind. , 1979 .

[5]  D. Aylor Aerial spore dispersal close to a focus of disease , 1989 .

[6]  Joe N. Perry,et al.  A nearest neighbour approach to the simulation of spread of barley yellow dwarf virus , 2000 .

[7]  A. McCartney,et al.  A Polymerase Chain Reaction (PCR) Assay for the Detection of Inoculum of Sclerotinia sclerotiorum , 2002, European Journal of Plant Pathology.

[8]  P. Walklate A random-walk model for dispersion of heavy particles in turbulent air flow , 1987 .

[9]  M. Fink,et al.  A two-dimensional stochastic model of downy mildew of radish , 2005 .

[10]  S. Engen,et al.  Stochastic Dispersal Processes in Plant Populations , 1997, Theoretical population biology.

[11]  S. Welham,et al.  Modelling of rain splash trajectories and prediction of rain splash height , 2001 .

[12]  T. W. Horst A surface depletion model for deposition from a Gaussian plume , 1977 .

[13]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[14]  T. Flesch,et al.  Estimating Spore Release Rates Using a Lagrangian Stochastic Simulation Model , 2001 .

[15]  R. Rowe Epidemiology of Cercosporella Footrot of Wheat: Disease Spread , 1973 .

[16]  J A N Filipe,et al.  Effects of dispersal mechanisms on spatio-temporal development of epidemics. , 2004, Journal of theoretical biology.

[17]  L. Madden,et al.  Effect of ground cover, rain intensity and strawberry plants on splash of simulated raindrops , 1993 .

[18]  Torben Mikkelsen,et al.  Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic , 2003 .

[19]  D. A. Webb,et al.  Quantification of raindrop kinetic energy for improved prediction of splash-dispersed pathogens. , 2002, Phytopathology.

[20]  D. Aylor,et al.  The Role of Intermittent Wind in the Dispersal of Fungal Pathogens , 1990 .

[21]  L. Boddy,et al.  Water, fungi, and plants , 1987 .

[22]  D. Savile,et al.  Fungal Spores: Their Liberation and Dispersal , 1973 .

[23]  M. Shaw,et al.  Modeling stochastic processes in plant pathology. , 1994, Annual review of phytopathology.

[24]  D. Aylor Chapter 8 – Dispersal in Time and Space: Aerial Pathogens , 1978 .

[25]  B. Fitt,et al.  Dispersal of Pseudocercosporella herpotrichoides and Pyrenopeziza brassicae spores in splash droplets , 1983 .

[26]  J. M. Hirst,et al.  Long-distance spore transport: vertical sections of spore clouds over the sea. , 1967, Journal of general microbiology.

[27]  Elaine Ward,et al.  Molecular diagnostics for fungal plant pathogens. , 2003, Pest management science.

[28]  D. J. Royle,et al.  Factors determining the severity of epidemics of Mycosphaerella graminicola (Septoria tritici) on winter wheat in the UK , 1993 .

[29]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[30]  D. L. Reichard,et al.  Motion analysis of drop impaction on a strawberry surface , 1991 .

[31]  H. A. Mccartney,et al.  A photographic technique for investigating the splashing of water drops on leaves , 1988 .

[32]  John L. Monteith,et al.  Vegetation and the atmosphere , 1975 .

[33]  L. L. Wilson,et al.  Effects of rain intensity on splash dispersal of Colletotrichum acutatum , 1996 .

[34]  M. Jeger Improved understanding of dispersal in crop pest and disease management: current status and future directions , 1999 .

[35]  B. Fitt,et al.  Splash dispersal of spores of Pseudocercosporella capsellae (white leaf spot) from oilseed rape leaves of different inclination, flexibility and age , 1992 .

[36]  Jerry M. Davis Modeling the long-range transport of plant pathogens in the atmosphere , 1987 .

[37]  M. J. Griffin,et al.  Cocoa black pod: a reinterpretation. , 1984 .

[38]  D. Moshou,et al.  The potential of optical canopy measurement for targeted control of field crop diseases. , 2003, Annual review of phytopathology.

[39]  F. Govers,et al.  Development of potato late blight epidemics: disease foci, disease gradients, and infection sources. , 1998, Phytopathology.

[40]  L. L. Wilson,et al.  Characterization of splash droplets from different surfaces with a phase doppler particle analyzer , 1999 .

[41]  The microbiology of the atmosphere , 1973 .

[42]  P. Walklate A Markov-chain particle dispersion model based on air flow data: Extension to large water droplets , 1986 .

[43]  J. Kranz,et al.  Epidemics of Plant Diseases , 1975, Ecological Studies.

[44]  F. Ferrandino Length scale of disease spread : Fact or artifact of experimental geometry , 1996 .

[45]  B. Fitt,et al.  Construction of dispersal models , 1985 .

[46]  M. Jeger,et al.  Effect of wind on the dispersal of oospores of Peronosclerospora sorghi from sorghum , 1997 .

[47]  W. Fry,et al.  Models for the Spread of Plant Disease: Some Experimental Results , 1983 .

[48]  J. Monteith,et al.  Boundary Layer Climates. , 1979 .

[49]  D. Aylor,et al.  Dispersion of spores released from an elevated line source within a wheat canopy , 1989 .

[50]  P. H. Gregory Interpreting Plant Disease Dispersal Gradients , 1968 .

[51]  M. Shaw,et al.  Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  K. B. Johnson Analysis of Spore Dispersal Gradients ofBotrytis cinereaand Gray Mold Disease Gradients in Snap Beans , 1983 .

[53]  J. Metz,et al.  Focus expansion in plant disease. 2. Realistic parameter-sparse models. , 1988 .

[54]  A. Diggle,et al.  AnthracnoseTracer: A Spatiotemporal Model for Simulating the Spread of Anthracnose in a Lupin Field. , 2002, Phytopathology.

[55]  J. C. Zadoks,et al.  Studies in focus development: an optimum theorem for the dual dispersal of plant pathogens. , 1992 .

[56]  C. Mundt Models from Plant Pathology on the Movement and Fate of New Genotypes of Microorganisms in the Environment , 1995 .

[57]  P. Walklate,et al.  The Role of Rain in Dispersal of Pathogen Inoculum , 1989 .

[58]  R. Roffey,et al.  Long-range air transmission of bacteria , 1978, Applied and environmental microbiology.

[59]  B. Fitt,et al.  Dispersal of Rhynchosporium secalis conidia from infected barley leaves or straw by simulated rain , 1988 .

[60]  R. Clarke,et al.  Long distance seed dispersal by wind: measuring and modelling the tail of the curve , 2000, Oecologia.

[61]  Thomas K. Flesch,et al.  Trajectory Curvature As A Selection Criterion For valid Lagrangian Stochastic Dispersion Models , 1997 .

[62]  H. A. Mccartney,et al.  Sampling bioaerosols in plant pathology , 1997 .

[63]  M. Shaw Assessment of upward movement of rain splash using a fluorescent tracer method and its application to the epidemiology of cereal pathogens , 1987 .

[64]  J. Manners,et al.  Conidium liberation in Erysiphe graminis , 1971 .

[65]  R. Brennan,et al.  Dispersal of Septoria nodorum Pycnidiospores by Simulated Rain and Wind , 1985 .

[66]  J. Metz,et al.  Focus expansion in plant disease. 1. The constant rate of focus expansion. , 1988 .

[67]  T R Gottwald,et al.  Effect of Simulated Wind-Driven Rain on Duration and Distance of Dispersal of Xanthomonas axonopodis pv. citri from Canker-Infected Citrus Trees. , 2005, Plant disease.

[68]  F. Mims,et al.  Fungal spores are transported long distances in smoke from biomass fires , 2004 .

[69]  P. Franzese Lagrangian stochastic modeling of a fluctuating plume in the convective boundary layer , 2003 .

[70]  Xu,et al.  Effects of prevailing wind direction on spatial statistics of plant disease epidemics , 2001 .

[71]  H. Scherm On the velocity of epidemic waves in model plant disease epidemics , 1996 .

[72]  James K. M. Brown,et al.  Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease , 2002, Science.

[73]  I. Vloutoglou,et al.  Periodicity and gradients in dispersal ofAlternaria linicola in linseed crops , 1995, European Journal of Plant Pathology.

[74]  R. Shaw,et al.  Frequency of Occurrence of Fast Gusts of Wind Inside a Corn Canopy , 1979 .

[75]  D. Aylor,et al.  Modeling spore dispersal in a barley crop , 1982 .

[76]  Conidium liberation in Erysiphe graminis: III. Wind tunnel studies , 1974 .

[77]  F van den Bosch,et al.  On the spread of plant disease: a theory on foci. , 1994, Annual review of phytopathology.

[78]  H. A. Mccartney,et al.  Deposition of Erysiphe graminis Conidia on a Barley Crop , 1987 .

[79]  J. Zadoks,et al.  EPIMUL, a simulator of foci and epidemics in mixtures of resistant and susceptible plants, mosaics and multilines. , 1977 .

[80]  M. Chelle,et al.  Modelling water transfer by rain-splash in a 3D canopy using Monte Carlo integration , 2004 .

[81]  J. Zadoks,et al.  Epidemiology and plant disease management , 1979 .

[82]  A. Stohl Computation, accuracy and applications of trajectories—A review and bibliography , 1998 .

[83]  O. Macdonald,et al.  Calculation of splash droplet trajectories , 1987 .

[84]  R. Shaw,et al.  Gust penetration into plant canopies , 1985 .

[85]  M. J. Jeger,et al.  Mathematical Analysis and Modeling of Spatial Aspects of Plant Disease Epidemics , 1990 .

[86]  L. Huber,et al.  Influence of target characteristics on the amount of water splashed by impacting drops , 1997 .

[87]  D. Aylor,et al.  A framework for examining inter-regional aerial transport of fungal spores , 1986 .

[88]  W. Marshall Biological particles over Antarctica , 1996, Nature.

[89]  J. West,et al.  Optical disease detection and estimation of latent infections around disease foci for targeted pesticide application , 2002 .

[90]  H. A. Mccartney,et al.  Spore dispersal and plant disease gradients: a comparison between two empirical models , 1987 .

[91]  M. Deadman,et al.  Splash dispersal of Pseudocercosporella herpotrichoides spores in wheat monocrop and wheat–clover bicrop canopies from simulated rain , 1996 .

[92]  M. Ridout,et al.  Effects of quadrat size and shape, initial epidemic conditions, and spore dispersal gradient on spatial statistics of plant disease epidemics. , 2000, Phytopathology.

[93]  H. A. Mccartney,et al.  Deposition of Particles Liberated in Gusts of Wind , 1981 .

[94]  S. Foster,et al.  Detection of airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae in oilseed rape crops by polymerase chain reaction (PCR) assays , 2002 .

[95]  J. Holt,et al.  Spatial dynamics of a monocyclic disease in a perennial crop , 1996 .

[96]  C. E. Main,et al.  Applying atmospheric trajectory analysis to problems in epidemiology , 1986 .

[97]  Benjamin Loubet,et al.  Modelling airborne concentration and deposition rate of maize pollen , 2004 .

[98]  M. J. Jeger,et al.  Analysing epidemics in time and space , 1983 .

[99]  Modeling the ETEX plume dispersion with the Canadian emergency response model , 1998 .

[100]  D. Aylor Force Required to Detach Conidia of Helminthosporium maydis. , 1975, Plant physiology.

[101]  M. Ostoja-Starzewski,et al.  A numerical study of plume dispersion motivated by a mesoscale atmospheric flow over a complex terrain , 2004 .

[102]  L. Huber,et al.  The incorporation of pathogen spores into rain‐splash droplets: a modelling approach , 1996 .

[103]  G. M. Richardson,et al.  Stochastic modelling of turbulent spray dispersion in the near-field of orchard sprayers , 1998 .

[104]  D. L. Reichard,et al.  Methods for study of raindrop impact on plant surfaces with application to predicting inoculum dispersal by rain , 1987 .

[105]  M. L. Martins,et al.  Cellular automata model for citrus variegated chlorosis. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  D. Singh,et al.  Long-distance dispersion of rust pathogens. , 1990, Annual review of phytopathology.

[107]  M. Jeger,et al.  Disease spread of non-specialised fungal pathogens from inoculated point sources in intraspecific mixed stands of cereal cultivars , 1983 .

[108]  P. Walklate,et al.  Vertical dispersal of plant pathogens by splashing. Part II : experimental study of the relationship between raindrop size and the maximum splash height , 1989 .

[109]  M. Giménez,et al.  Intercomparison of atmospheric dispersion models , 2003 .

[110]  J. M. Hirst,et al.  A rain tower and wind tunnel for studying the dispersal of plant pathogens by rain and wind , 1986 .

[111]  R. D. Berger Spatial and Temporal Spread of Oat Crown Rust , 1979 .

[112]  A numerical model of the transport and diffusion of Peronospora tabacina spores in the evolving atmospheric boundary layer , 1997 .

[113]  W. Fry,et al.  Models for the spread of disease: model description , 1983 .

[114]  John D. Wilson Trajectory Models for Heavy Particles in Atmospheric Turbulence: Comparison with Observations , 2000 .

[115]  Elizabeth J. Austin,et al.  Fitting and testing spatio‐temporal stochastic models with application in plant epidemiology , 1996 .

[116]  B. Fitt,et al.  Spore dispersal in relation to epidemic models , 1986 .

[117]  F. Bosch,et al.  A model for dispersal of plant pathogens by rainsplash , 1998 .

[118]  F. Ferrandino,et al.  Dispersive epidemic waves. I: Focus expansion within a linear planting , 1993 .

[119]  A. McCartney,et al.  The collection and retention of a range of common airborne spore types trapped directly into microtiter wells for enzyme-linked immunosorbent analysis , 2004 .

[120]  B. Legg,et al.  Spore dispersal in a barley crop: A mathematical model , 1979 .

[121]  L. L. Wilson,et al.  Calibration and evaluation of an electronic sensor for rainfall kinetic energy. , 1998, Phytopathology.

[122]  Laurence V. Madden,et al.  Introduction to Plant Disease Epidemiology , 1990 .

[123]  P. Kevan,et al.  Factors affecting pollen dynamics and its importance to pollen contamination: a review , 1991 .

[124]  M. E. Lacey,et al.  The production and release of ascospores of Pyrenopeziza brassicae on oilseed rape. , 1990 .

[125]  D. Butler,et al.  Dispersal of Passalora personata conidia from groundnut by wind and rain , 1998 .

[126]  G. Holmes,et al.  Forecasting Long-Range Transport of Downy Mildew Spores and Plant Disease Epidemics , 2001 .

[127]  Numerical modeling of minor gas constituents and aerosols in the atmosphere , 2004 .

[128]  H. Scherm,et al.  Gradients of Primary and Secondary Infection by Monilinia vaccinii-corymbosi from Point Sources of Ascospores and Conidia. , 2001, Plant disease.

[129]  L. Ganio,et al.  Artificial wind-gust liberation of microbial bioaerosols previously deposited on plants , 1993 .

[130]  R. Kennedy,et al.  A New Method To Monitor Airborne Inoculum of the Fungal Plant Pathogens Mycosphaerella brassicicola andBotrytis cinerea , 2000, Applied and Environmental Microbiology.

[131]  B. J. Legg,et al.  Movement of plant pathogens in the crop canopy , 1983 .

[132]  P. J. Walklate,et al.  A simulation study of pesticide drift from an air-assisted orchard sprayer , 1992 .

[133]  W. Fry,et al.  Interplot interference: a model for planning field experiments with aerially disseminated pathogens , 1983 .

[134]  John D. Wilson,et al.  Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere , 1996 .

[135]  Ruben Avila,et al.  A 3-D Lagrangian stochastic model for the meso-scale atmospheric dispersion applications , 2001 .

[136]  M. Jeger,et al.  Simulation of vertical spread of plant diseases in a crop canopy by stem extension and splash dispersal , 2002 .

[137]  P. H. Gregory The dispersion of air-borne spores , 1945 .

[138]  D. Aylor Deposition gradients of urediniospores of Puccinia recondita near a source. , 1987 .

[139]  H. Mccartney The dispersal of plant pathogen spores and pollen from oilseed rape crops , 1990 .

[140]  H. A. McCartney,et al.  Influence of simulated rain on dispersal of rust spores from infected wheat seedlings , 2000 .

[141]  E. Shields,et al.  An aerobiological framework for assessing cross-pollination in maize , 2003 .

[142]  Elaine Ward,et al.  Plant pathogen diagnostics : immunological and nucleic acid-based approaches , 2004 .

[143]  R. Cammack FACTORS AFFECTING INFECTION GRADIENTS FROM A POINT SOURCE OF PUCCINIA POLYSORA IN A PLOT OF ZEA MAYS , 1958 .

[144]  D. Aylor,et al.  Quantifying the Rate of Release and Escape of Phytophthora infestans Sporangia from a Potato Canopy. , 2001, Phytopathology.

[145]  C. Mundt A Modification of Gregory's Model For Describing Plant Disease Gradients , 1985 .

[146]  D. L. Reichard,et al.  Splash dispersal of Colletotrichum acutatum and Phytophthora cactorum from strawberry fruit by single drop impactions , 1992 .

[147]  J. Parlange,et al.  Ventilation required to entrain small particles from leaves. , 1975, Plant physiology.

[148]  W. Schmidt Die Verbreitung von Samen und Blütenstaub durch die Luftbewegung , 1918, Österreichische botanische Zeitschrift.

[149]  James H Graham,et al.  Geo-referenced spatiotemporal analysis of the urban citrus canker epidemic in Florida. , 2002, Phytopathology.

[150]  P. Walklate Vertical dispersal of plant pathogens by splashing. Part I: the theoretical relationship between rainfall and upward rain splash , 1989 .

[151]  R H Varey,et al.  Atmospheric Diffusion (3rd edn) , 1984 .