Improving the open circuit voltage of MAPbI2Br by Sb doping for achieving high efficient solar cells

[1]  S. Hussain,et al.  Tuning the band gap edges of perovskite material by Cd doping for achieving high current density in perovskite solar cells , 2023, Ceramics International.

[2]  S. Hussain,et al.  700 keV Au ions beam effect on the structural, optical and photovoltaic properties of MAPbI3 solar cells , 2022, Ceramics International.

[3]  S. Hussain,et al.  The Effect of 600 keV Ag Ion Irradiation on the Structural, Optical, and Photovoltaic Properties of MAPbBr3 Films for Perovksite Solar Cell Applications , 2022, Materials.

[4]  M. Almoneef,et al.  Bi and Sn Doping Improved the Structural, Optical and Photovoltaic Properties of MAPbI3-Based Perovskite Solar Cells , 2022, Materials.

[5]  S. Hussain,et al.  Effect of Cd Doping on the Structural, Optical, and Photovoltaic Properties of SnS Films , 2022, Journal of Materials Research and Technology.

[6]  Samy F. Mahmoud,et al.  Decorating wide band gap CH3NH3PbBr3 perovskite with 4AMP for highly efficient and enhanced open circuit voltage perovskite solar cells , 2021, Solar Energy.

[7]  S. Hussain,et al.  Investigations the structural, optical and photovoltaic properties of La doped TiO2 photoanode based dye sensitized solar cells , 2021, Optical Materials.

[8]  E. Liu,et al.  Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity , 2021 .

[9]  S. Seto Inverted planer perovskite solar cells fabricated by all vapor phase process , 2020, Japanese Journal of Applied Physics.

[10]  M. Iqbal,et al.  Structural and optical properties of Ti and Cu co‐doped ZnO thin films for photovoltaic applications of dye sensitized solar cells , 2020, International Journal of Energy Research.

[11]  Hongwei Song,et al.  Incorporating of Lanthanides Ions into Perovskite Film for Efficient and Stable Perovskite Solar Cells. , 2020, Small.

[12]  Peng Liu,et al.  High-performance perovskite solar cells based on passivating interfacial and intergranular defects , 2020, Solar Energy Materials and Solar Cells.

[13]  M. Akhtaruzzaman,et al.  Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells , 2020, Materials.

[14]  Juan Meng,et al.  Perovskite Solar Cells Based on Compact, Smooth FA0.1MA0.9PbI3 Film with Efficiency Exceeding 22% , 2020, Nanoscale Research Letters.

[15]  L. Manna,et al.  Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties , 2020, ACS Energy Letters.

[16]  W. Shen,et al.  Room-temperature synthesis of excellent-performance CsPb1-Sn Br3 perovskite quantum dots and application in light emitting diodes , 2020 .

[17]  L. Liao,et al.  Enhanced Photoresponsivity of a GaAs Nanowire Metal-Semiconductor-Metal Photodetector by Adjusting the Fermi Level. , 2019, ACS applied materials & interfaces.

[18]  C. Zaldo,et al.  Huge Photostability Enhancement in Bismuth-Doped Methylammonium Lead Iodide Hybrid Perovskites by Light-Induced Transformation , 2019, Chemistry of Materials.

[19]  K. Maciejewska,et al.  The influence of dopant concentration and grain size on the ability for temperature sensing using nanocrystalline MgAl2O4:Co2+,Nd3+ luminescent thermometers , 2019, New Journal of Chemistry.

[20]  A. Khan,et al.  High-Performance CsPbI2Br Perovskite Solar Cells with Zinc and Manganese Doping , 2019, Nanoscale Research Letters.

[21]  A. Porfirev,et al.  Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks. , 2019, ACS nano.

[22]  T. Tamrin,et al.  Investigation of TiO2 doped with nitrogen and vanadium using hydrothermal/Sol-Gel method and its application for dyes photodegradation , 2019, Arab Journal of Basic and Applied Sciences.

[23]  J. Lian,et al.  Electron-Transport Materials in Perovskite Solar Cells , 2018, Small Methods.

[24]  C. Ballif,et al.  Highly Conductive and Broadband Transparent Zr-Doped In2O3 as Front Electrode for Solar Cells , 2018, IEEE Journal of Photovoltaics.

[25]  H. A. A. El-Ghany Cadmium Doped Copper Containing Phosphate Glass as a Bandpass Filter for Solar Cell Protection , 2018 .

[26]  L. Giribabu,et al.  Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications , 2018 .

[27]  Wasim J. Mir,et al.  Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? , 2018 .

[28]  Daqin Chen,et al.  Silica-Coated Mn-Doped CsPb(Cl/Br)3 Inorganic Perovskite Quantum Dots: Exciton-to-Mn Energy Transfer and Blue-Excitable Solid-State Lighting. , 2017, ACS applied materials & interfaces.

[29]  M. Green,et al.  Strontium-Doped Low-Temperature-Processed CsPbI2Br Perovskite Solar Cells , 2017 .

[30]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[31]  S. Xiao,et al.  Tailoring the Performances of Lead Halide Perovskite Devices with Electron‐Beam Irradiation , 2017, Advanced materials.

[32]  Guan Wu,et al.  Multicolored Mixed-Organic-Cation Perovskite Quantum Dots (FAxMA1–xPbX3, X = Br and I) for White Light-Emitting Diodes , 2017 .

[33]  D. Sarma,et al.  Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals. , 2017, Angewandte Chemie.

[34]  G. Qin,et al.  Refractive index and extinction coefficient of NH2CH  =  NH2PbI3 perovskite photovoltaic material , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Jinsong Huang,et al.  Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed , 2017 .

[36]  P. Woodward,et al.  Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites , 2017 .

[37]  Jinsong Huang,et al.  Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals , 2017, Nature Communications.

[38]  R. Heller,et al.  Enhancement of the refractive index of sputtered zinc oxide thin films through doping with Fe2O3 , 2017 .

[39]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[40]  K. Ho,et al.  Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers , 2016, Scientific Reports.

[41]  S. Zakeeruddin,et al.  Enhancing Efficiency of Perovskite Solar Cells via N‐doped Graphene: Crystal Modification and Surface Passivation , 2016, Advanced materials.

[42]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[43]  E. Tsymbal,et al.  Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals , 2016 .

[44]  Qibing Pei,et al.  Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. , 2015, ACS applied materials & interfaces.

[45]  Marc Meuris,et al.  Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells , 2015 .

[46]  N. R. Mathews,et al.  Fe doped TiO2 powder synthesized by sol gel method: structural and photocatalytic characterization , 2015, Journal of Materials Science: Materials in Electronics.

[47]  S. Mushtaq,et al.  Low-temperature synthesis and characterization of Sn-doped Sb2S3 thin film for solar cell applications , 2015 .

[48]  J. J. Gallardo,et al.  New insights into organic-inorganic hybrid perovskite CH₃NH₃PbI₃ nanoparticles. An experimental and theoretical study of doping in Pb²⁺ sites with Sn²⁺, Sr²⁺, Cd²⁺ and Ca²⁺. , 2015, Nanoscale.

[49]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[50]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[51]  Peyman Servati,et al.  An efficient inverted organic solar cell with improved ZnO and gold contact layers , 2012 .

[52]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[53]  Xiujian Zhao,et al.  Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. , 2009, Journal of hazardous materials.

[54]  D. P. Joshi,et al.  Effect of grain size on the resistivity of polycrystalline material , 1983 .

[55]  R. F. Wood,et al.  New techniques for the study and control of grain boundary effects , 1980 .

[56]  B. Stannowski,et al.  Nanocrystalline n-Type Silicon Oxide Front Contacts for Silicon Heterojunction Solar Cells: Photocurrent Enhancement on Planar and Textured Substrates , 2018, IEEE Journal of Photovoltaics.

[57]  Namchul Cho,et al.  Inorganic Lead Halide Perovskite Single Crystals: Phase‐Selective Low‐Temperature Growth, Carrier Transport Properties, and Self‐Powered Photodetection , 2017 .

[58]  M. I. Khan,et al.  Structural, electrical and optical properties of multilayer TiO 2 thin films deposited by sol–gel spin coating , 2017 .

[59]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[60]  Yixin Zhao,et al.  Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. , 2014, Faraday discussions.

[61]  A. Weiss,et al.  Phase Diagrams of Quasibinary Systems of the Type: ABX3 — A′BX3; ABX3 — AB′X3, and ABX3 — ABX′3; X = Halogen , 1992 .