Achieving control of in-plane elastic waves

We derive the elastic properties of a cylindrical cloak for in-plane coupled shear and pressure waves. The cloak is characterized by a rank 4 elasticity tensor with spatially varying entries, which are deduced from a geometric transform. Remarkably, the Navier equations retain their form under this transform, which is generally untrue [G. W. Milton et al., N. J. Phys. 8, 248 (2006)]. The validity of our approach is confirmed by comparison of the analytic Green’s function in homogeneous isotropic elastic space against full-wave finite element computations in a heterogeneous anisotropic elastic region surrounded by perfectly matched layers.

[1]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[3]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[4]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[5]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  S. Guenneau,et al.  Broadband cylindrical acoustic cloak for linear surface waves in a fluid. , 2008, Physical review letters.

[7]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Davide Bigoni,et al.  Asymptotic models of dilute composites with imperfectly bonded inclusions , 1998 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  N. Nicorovici,et al.  Green's tensors and lattice sums for electrostatics and elastodynamics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[13]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[14]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[15]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[16]  Daniel Torrent,et al.  Acoustic cloaking in two dimensions: a feasible approach , 2008 .

[17]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.

[18]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .