Asymmetries in the distribution of H2O and CO2 in the inner coma of Comet 9P/Tempel 1 as observed by Deep Impact

[1]  Alan W. Delamere,et al.  Deep Impact instrument calibration , 2008 .

[2]  W. Delamere,et al.  Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .

[3]  M. Belton,et al.  Dust coma morphology in the Deep Impact images of Comet 9P/Tempel 1 , 2007 .

[4]  J. Crovisier New trends in cometary chemistry. , 2006, Faraday discussions.

[5]  S. Kwok,et al.  Radio observations of Comet 9P/Tempel 1 before and after Deep Impact , 2006, astro-ph/0610717.

[6]  P. Feldman,et al.  Ultraviolet Spectroscopy of Comet 9P/Tempel 1 with Alice/Rosetta during the Deep Impact Encounter , 2006, astro-ph/0608708.

[7]  K. P. Klaasen,et al.  Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 , 2006, Science.

[8]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[9]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[10]  E. Dartois,et al.  The Spatial Distribution of Ices in Star-Forming Regions , 2005, Proceedings of the International Astronomical Union.

[11]  K. Klaasen,et al.  Expectations for Infrared Spectroscopy of 9P/Tempel 1 from Deep Impact , 2005 .

[12]  James W. Baer,et al.  An Overview of the Instrument Suite for the Deep Impact Mission , 2005 .

[13]  M. DiSanti,et al.  Carbon Monoxide Production and Excitation in Comet C/1995 O1 (Hale-Bopp): Isolation of Native and Distributed CO Sources , 2001 .

[14]  P. Feldman,et al.  Post-Perihelion HST Observations of Comet Hale-Bopp , 1999 .

[15]  Emmanuel Lellouch,et al.  The Spectrum of Comet Hale-Bopp (C/1995 O1) Observed with the Infrared Space Observatory at 2.9 Astronomical Units from the Sun , 1997, Science.

[16]  M. Mumma,et al.  Monte Carlo Simulation of Cometary Atmospheres: Application to Comet P/Halley at the Time of the Giotto Spacecraft Encounter. II. Axisymmetric Model , 1996 .

[17]  Michel Combes,et al.  The 2.5-12 μm spectrum of comet halley from the IKS-VEGA experiment , 1988 .

[18]  H. Weaver,et al.  Post-perihelion observations of water in comet Halley , 1986, Nature.

[19]  Cesare Barbieri,et al.  First Halley Multicolour Camera imaging results from Giotto , 1986 .

[20]  P. Feldman,et al.  The ultraviolet spectrum of periodic comet encke (1980 XI) , 1984 .

[21]  T. Encrenaz,et al.  Infrared fluorescence of molecules in comets - The general synthetic spectrum , 1983 .

[22]  J. Crovisier,et al.  The OH radiacal in comets: observation and analysis of the hyperfine microwave transitions at 1667 MHz and 1665 MHz. , 1981 .

[23]  J. Lyke,et al.  Temporal evolution of parent volatiles and dust in Comet 9P/Tempel 1 resulting from the Deep Impact experiment , 2007 .

[24]  W. Delamere,et al.  The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model , 2007 .

[25]  Peter H. Schultz,et al.  The shape, topography, and geology of Tempel 1 from Deep Impact observations , 2007 .

[26]  D. Schleicher Deep Impact's target Comet 9P/Tempel 1 at multiple apparitions: Seasonal and secular variations in gas and dust production , 2007 .

[27]  J. Ortiz,et al.  Pre-impact monitoring of Comet 9P/Tempel 1, the Deep Impact target , 2006 .

[28]  Letter to the Editor ASTRONOMY AND ASTROPHYSICS Infrared spectral observations of comet 103P/Hartley 2 by ISOPHOT ⋆ LETTER , 2022 .