A Simply Stabilized Running Model

The spring-loaded inverted pendulum (SLIP), or monopedal hopper, is an archetypal model for running in numerous animal species. Although locomotion is generally considered a complex task requiring sophisticated control strategies to account for coordination and stability, we show that stable gaits can be found in the SLIP with both linear and "air" springs, controlled by a simple fixed-leg reset policy. We first derive touchdown-to-touchdown Poincare maps under the common assumption of negligible gravitational effects during the stance phase. We subsequently include and assess these effects and briefly consider coupling to pitching motions. We investigate the domains of attraction of symmetric periodic gaits and bifurcations from the branches of stable gaits in terms of nondimensional parameters.

[1]  Daniel E. Koditschek,et al.  Template based control of hexapedal running , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[2]  Full,et al.  Energy absorption during running by leg muscles in a cockroach , 1998, The Journal of experimental biology.

[3]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[4]  Jessica K. Hodgins,et al.  Adjusting step length for rough terrain locomotion , 1991, IEEE Trans. Robotics Autom..

[5]  Philip Holmes,et al.  Towards a factored analysis of legged locomotion models , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Daniel E. Koditschek,et al.  Characterization of monoped equilibrium gaits , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[8]  John Guckenheimer,et al.  Planar Hybrid Systems , 1994, Hybrid Systems.

[9]  J. W. Humberston Classical mechanics , 1980, Nature.

[10]  R. Full,et al.  The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners , 1999 .

[11]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.

[12]  Philip Holmes,et al.  Stability Analysis of Legged Locomotion Models by Symmetry-Factored Return Maps , 2004, Int. J. Robotics Res..

[13]  K. Pearson Central Programming and Reflex Control of Walking in the Cockroach , 1972 .

[14]  Hartmut Geyer,et al.  Swing-leg retraction: a simple control model for stable running , 2003, Journal of Experimental Biology.

[15]  John Guckenheimer,et al.  Control of a spring-mass hopper , 2003 .

[16]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[17]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[18]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[19]  P. Holmes,et al.  Three-Dimensional Running is Unstable but Easily Stabilized , 2005 .

[20]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[21]  M. Coleman,et al.  Prediction of stable walking for a toy that cannot stand. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Daniel E. Koditschek,et al.  Spring loaded inverted pendulum running: a plant model , 1998 .

[23]  M. Coleman,et al.  An Uncontrolled Walking Toy That Cannot Stand Still , 1998 .

[24]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[25]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[26]  Enric Celaya,et al.  A control structure for the locomotion of a legged robot on difficult terrain , 1998, IEEE Robotics Autom. Mag..

[27]  Linda Geppert Robotics: QRIO , 2004 .

[28]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[29]  Philip Holmes,et al.  Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory , 2000, Biological Cybernetics.

[30]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[31]  R. McGhee,et al.  On the dynamic stability of biped locomotion. , 1974, IEEE transactions on bio-medical engineering.

[32]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[33]  Reinhard Blickhan,et al.  A movement criterion for running. , 2002, Journal of biomechanics.

[34]  T. McGeer,et al.  Passive bipedal running , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[35]  Philip Holmes,et al.  Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects , 2002, Biological Cybernetics.

[36]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[37]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[38]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[39]  Martin Buehler,et al.  Stable control of a simulated one-legged running robot with hip and leg compliance , 1997, IEEE Trans. Robotics Autom..

[40]  Philip Holmes,et al.  Exploiting Passive Stability for Hierarchical Control , 2002 .

[41]  P. Holmes,et al.  Mechanical models for insect locomotion: stabilty and parameter studies , 2001 .

[42]  Richard W. Longman,et al.  Stable one-legged hopping without feedback and with a point foot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[43]  D. Koditschek,et al.  Approximating the Stance Map of a 2-DOF Monoped Runner , 2000 .

[44]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[45]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[46]  Jun Nishii,et al.  Legged insects select the optimal locomotor pattern based on the energetic cost , 2000, Biological Cybernetics.

[47]  Daniel E. Koditschek,et al.  Toward the control of a multi-jointed, monoped runner , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[48]  C. T. Farley,et al.  Leg stiffness and stride frequency in human running. , 1996, Journal of biomechanics.

[49]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[50]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[51]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[52]  R. Full,et al.  Mechanical aspects of legged locomotion control. , 2004, Arthropod structure & development.

[53]  Philip Holmes,et al.  Stability Analysis of a Clock-Driven Rigid-Body SLIP Model for RHex , 2004, Int. J. Robotics Res..

[54]  A. Ruina Nonholonomic stability aspects of piecewise holonomic systems , 1998 .

[55]  R. Blickhan,et al.  Spring-mass running: simple approximate solution and application to gait stability. , 2005, Journal of theoretical biology.

[56]  J.W. Grizzle,et al.  Asymptotic stabilization of a five-link, four-actuator, planar bipedal runner , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[57]  R. Full,et al.  Dynamic stabilization of rapid hexapedal locomotion. , 2002, The Journal of experimental biology.